An Interpolating Decision Procedure for Transitive Relations with Uninterpreted Functions

Georg Weissenbacher（白傑岳）

University of Oxford and ETH Zurich

UNU IIST，Macau， $6^{\text {th }}$ of January， 2010

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Motivation

Prevent bad things from happening

Safety Properties, Assertions

A certain bad thing is not supposed to happen
assert(\neg bad thing)
三
safety / reachability property

Safety Properties, Assertions

A certain bad thing is not supposed to happen
assert(\neg bad thing)
三
safety / reachability property
Assertions:

- Supported by main-stream languages such as ANSI-C, C++, Java
- Widely accepted by programmers
- Easy to generate (buffer overflows, division by 0, etc.)

Safety Properties, Assertions

A certain bad thing is not supposed to happen assert(\neg bad thing)

三 safety / reachability property

Assertions:

- Supported by main-stream languages such as ANSI-C, C++, Java
- Widely accepted by programmers
- Easy to generate (buffer overflows, division by 0, etc.)

Prove safety of program or find counterexample using Model Checking

Outline

- Part I: Interpolant-based model checking
- Background (predicate transformers, interpolants, safety invariants)
- Example
- Part II: An interpolating decision procedure
- A proof-generating decision procedure
- Deriving interpolants from proofs

Hoare Triples

- Program assertions represented by predicates
- $\{P\}$ instruction $\{Q\}$ "if P holds, Q will hold after instruction terminates"
- Example of a Hoare rule:

$$
\overline{\{P[\mathrm{x} / \text { expr }]\} \mathrm{x}:=\operatorname{expr}\{P\}} \text { assignment }
$$

Hoare Triples

- Program assertions represented by predicates
- $\{P\}$ instruction $\{Q\}$
"if P holds, Q will hold after instruction terminates"
- Example of a Hoare rule:

$$
\overline{\{P[\mathrm{x} / \text { expr }]\} \mathrm{x}:=\operatorname{expr}\{P\}} \text { assignment }
$$

- Alternative view: Instructions represented by predicates

$$
\begin{array}{ccccc}
P(x) & \wedge & T\left(x, x^{\prime}\right) & \Rightarrow & Q\left(x^{\prime}\right) \\
(x=5) & \wedge & \left(x^{\prime}=x+1\right) & \Rightarrow & \left(x^{\prime} \neq 5\right)
\end{array}
$$

Predicate Transformers

- Strongest post-condition:

$$
\begin{array}{ll}
\{P\} \mathrm{x}:=\operatorname{expr} ;\{\mathrm{Q}\} & Q \equiv\left(\exists x \cdot P \wedge x^{\prime}=\text { expr }\right) \\
\{P\}[\operatorname{expr}]\{Q\} & Q \equiv P \wedge \operatorname{expr}
\end{array}
$$

- Weakest pre-condition:

$$
\begin{array}{ll}
\{P\} \times \mathrm{x}:=\operatorname{expr} ;\{Q\} & P \equiv Q[x / \text { expr }] \\
\{P\}[\text { expr }]\{Q\} & P \equiv \operatorname{expr} \Rightarrow Q
\end{array}
$$

- Composition rule for two sub-paths π_{1} and π_{2} :

$$
\frac{\{P\} \pi_{1}\{Q\},\{Q\} \pi_{2}\{R\}}{\{P\} \pi_{1} ; \pi_{2}\{R\}} \text { composition }
$$

- Loops: Fixed-point computation (cf. Dijkstra) "good invariants" are hard to find

Feasible paths

Infeasible paths

$$
\text { SP: }(x>0) \wedge z=y+1 \quad \text { WP: } z=y
$$

Infeasible paths

$\mathrm{SP}:(x>0) \wedge z=y+1 \quad \mathrm{WP}: z=y \quad(z=y+1) \wedge(z=y) \Rightarrow$ false

Infeasible paths (continued)

$$
\mathrm{SP}:(x>0) \wedge z=y+1
$$

WP: $z=y$

Infeasible paths (continued)

What is a Craig interpolant?

"Traditional" definition [William Craig, 57]:

- $A \Rightarrow I \Rightarrow C$
- all non-logical symbols in I occur in A as well as in C

What is a Craig interpolant?

Common definition for automated verification:

- $A \Rightarrow I$ and $I \wedge B$ inconsistent
- all non-logical symbols in / occur in A as well as in B

Over-approximation of reachable safe states in a program:

- T_{ℓ} : transition function for each location $\ell \in\{1,2,3, \ldots\}$
- $T_{1}\left(x_{1}, x_{2}\right) \wedge T_{2}\left(x_{2}, x_{3}\right)$ symbolic representation of (infeasible) path
- $T_{1}\left(x_{1}, x_{2}\right) \Rightarrow I\left(x_{2}\right) \quad I\left(x_{2}\right) \wedge T_{2}\left(x_{2}, x_{3}\right)$ inconsistent

Safety Invariant, Covered Nodes

- Safety Invariant: $I \wedge T \Rightarrow I^{\prime}$ and "bad" locations are labelled "false"
- If $I_{3} \Rightarrow I_{2}$ then the node labelled " I_{3} " and its successors are covered

A small example: Wegner's bit-counting algorithm.

$$
\begin{aligned}
& y:=x ; c:=0 ; \\
& \text { while }(y \neq 0)\{ \\
& \quad y:=y \&(y-1) ; \\
& \quad c:=c+1 ; \\
& \quad \text { assert }(x \geq y) ; \\
& \}
\end{aligned}
$$

Representation as control flow graph (CFG):

An inconsistent formula representing an infeasible path

$$
(x=y) \wedge(y \neq 0) \wedge\left(y^{\prime}=y \&(y-1)\right) \wedge\left(\neg\left(x \geq y^{\prime}\right)\right)
$$

Step	SP	ITP	\neg WP
1	$x=y$	$x=y$	$(x \geq y \&(y-1)) \vee(y=0)$
2			
3			
4			

An inconsistent formula representing an infeasible path

$$
(x=y) \wedge(y \neq 0) \wedge\left(y^{\prime}=y \&(y-1)\right) \wedge\left(\neg\left(x \geq y^{\prime}\right)\right)
$$

Step	SP	ITP	\neg WP
1	$x=y$	$x=y$	$(x \geq y \&(y-1)) \vee(y=0)$
2	$x=y \wedge y \neq 0$	$x=y$	$(x \geq y \&(y-1))$
3			
4			

An inconsistent formula representing an infeasible path

$$
(x=y) \wedge(y \neq 0) \wedge\left(y^{\prime}=y \&(y-1)\right) \wedge\left(\neg\left(x \geq y^{\prime}\right)\right)
$$

Step	SP	ITP	\neg WP
1	$x=y$	$x=y$	$(x \geq y \&(y-1)) \vee(y=0)$
2	$x=y \wedge y \neq 0$	$x=y$	$(x \geq y \&(y-1))$
3	$y^{\prime}=x \&(x-1) \wedge x \neq 0$	$x \geq y^{\prime}$	$x \geq y^{\prime}$
4			

An inconsistent formula representing an infeasible path

$$
(x=y) \wedge(y \neq 0) \wedge\left(y^{\prime}=y \&(y-1)\right) \wedge\left(\neg\left(x \geq y^{\prime}\right)\right)
$$

Step	SP	ITP	\neg WP
1	$x=y$	$x=y$	$(x \geq y \&(y-1)) \vee(y=0)$
2	$x=y \wedge y \neq 0$	$x=y$	$(x \geq y \&(y-1))$
3	$y^{\prime}=x \&(x-1) \wedge x \neq 0$	$x \geq y^{\prime}$	$x \geq y^{\prime}$
4	false	false	false

An inconsistent formula representing an infeasible path

$$
(x=y) \wedge(y \neq 0) \wedge\left(y^{\prime}=y \&(y-1)\right) \wedge\left(\neg\left(x \geq y^{\prime}\right)\right)
$$

Step	SP	ITP	\neg WP
1	$x=y$	$x=y$	$(x \geq y \&(y-1)) \vee(y=0)$
2	$x=y \wedge y \neq 0$	$x=y$	$(x \geq y \&(y-1))$
3	$y^{\prime}=x \&(x-1) \wedge x \neq 0$	$x \geq y^{\prime}$	$x \geq y^{\prime}$
4	false	false	false

A small example (now with interpolants)

Unwinding the CFG further (continued)

Path prefix:

$$
(x=y) \wedge(y \neq 0) \wedge\left(y^{\prime}=y \&(y-1)\right) \wedge\left(x \geq y^{\prime}\right) \wedge\left(y^{\prime} \neq 0\right) \wedge\left(y^{\prime \prime}=y^{\prime} \&\left(y^{\prime}-1\right)\right)
$$

Assertion:

$$
\neg\left(x \geq y^{\prime \prime}\right)
$$

Interpolant:

$$
x \geq y^{\prime \prime}
$$

follows from:

$$
x \geq y^{\prime},\left(y^{\prime \prime}=y^{\prime} \&\left(y^{\prime}-1\right)\right) \text { implies }\left(y^{\prime} \geq y^{\prime \prime}\right), \text { and transitivity }
$$

Strongest post-condition: (by means of substitution)

$$
y^{\prime \prime}=(x \&(x-1)) \&((x \&(x-1))-1) \wedge(x \neq 0) \wedge(x \&(x-1) \neq 0)
$$

Succeeded to prove safety!

Conditions on Interpolants

- Given a sequence of transitions $T_{0} \wedge T_{1} \wedge \ldots \wedge T_{n}$
- let l_{i} be the interpolant for

$$
T_{0} \wedge T_{1} \wedge \ldots \wedge T_{i-1} \quad \text { and } \quad T_{i} \wedge \ldots \wedge T_{n-1} \wedge T_{n}
$$

- then it has to hold that

$$
\begin{aligned}
& I_{0}=\text { true } \\
& I_{n+1}=\text { false } \\
& \forall i \in\{1, n\} . I_{i} \wedge T_{i} \Rightarrow I_{i+1}
\end{aligned}
$$

Currently:

- Boolean connectives
- Equality
- Uninterpreted functions
- Difference logic, linear arithmetic

Problem: Programs have bit-vector semantics and bit-vector operations.

$$
a>b+2 \wedge a \leq b
$$

- Unsatisfiable in the theory of linear arithmetic $(\mathbb{R}, \mathbb{Z}, \ldots)$

How is the transition function T encoded?

Currently:

- Boolean connectives
- Equality
- Uninterpreted functions
- Difference logic, linear arithmetic

Problem: Programs have bit-vector semantics and bit-vector operations.

$$
a>b+2 \wedge a \leq b \quad\{a \mapsto 2, b \mapsto 2\}
$$

- Unsatisfiable in the theory of linear arithmetic $(\mathbb{R}, \mathbb{Z}, \ldots)$
- Satisfiable if a and b are 2-bit bit-vectors

Proposed solution

- Provide proof-generating decision procedure for conjunctions of
- Strict and weak inequalities ($<, \leq$)
- Equalities and dis-equalities $(=, \neq)$
- both with uninterpreted functions (UF)
- Deal with theory specific terms in an ad-hoc manner
- Constant propagation
- Simplify ground terms (bit-level accurate)
- Limited application of theory axioms

Propositional structure can be dealt with using SMT and [Yorsh + Musuvathi, 05]

Content of the rest of this talk (Part II)

A graph-based decision procedure
for $\geq,>,=, \neq$
and
uninterpreted functions

Ad-hoc support for selected
theory axioms
Construction of interpolants from proofs

$$
x \leq F x+2
$$

Overview: Proof-generating Decision Procedure

Weak and strong inequalities

- Add all facts $s<t$ and $s \leq t$ to directed graph \mathcal{G}
- Compute Strongly Connected Components (SCCs)

- If SCC contains an edge $s<t$:
- find shortest path from s to t
- report contradictory cycle
- Otherwise: For each $s \leq t$ in SCC
- add $s=t$ as a fact

Equalities and Dis-Equalities

- Add all facts $s=t$ to graph-based Union-Find data structure \mathcal{U}
- Modify Find-operation / path-compression:
- remember the 2 edges entailing shortcut
- Modify Union-operation:
- triangulate sub-graph s-rep $(s)-\operatorname{rep}(t)-t$
- Perform query for each $s \neq t$

Uninterpreted Functions

- Proof-producing congruence closure [Nieuwenhuis, Oliveras 05]
- Observation:

$$
\Rightarrow \quad f(t)=f(s)
$$

Uninterpreted Functions (continued)

- Based on Union-Find data structure \mathcal{U} :
- Maintain a use_list of encountered terms $f(t)$ that "use" c

$$
\text { use_list }[\mathrm{c}]=[\mathrm{f}(\mathrm{t}), \mathrm{g}(\mathrm{~s}), \ldots]
$$

- For each $f(c)$

$$
\operatorname{lookup}(f, c)= \begin{cases}f(t) & \text { an element which maps to } f(c) \\ \perp & \text { otherwise }\end{cases}
$$

Uninterpreted Functions (continued)

- If the representative constant c changes to c^{\prime}
- For all $f(t) \in$ use_list[c]:

$$
\begin{array}{ll}
\operatorname{add}(f(t)=f(s)) \text { to } \mathcal{U} & \text { if lookup }\left(f, c^{\prime}\right)=f(s) \\
\operatorname{lookup}\left(f, c^{\prime}\right) \stackrel{\text { det }}{=} f(t) & \text { if lookup }\left(f, c^{\prime}\right)=\perp
\end{array}
$$

Update use_list accordingly.

Uninterpreted Functions (continued)

- If the representative constant c changes to c^{\prime}
- For all $f(t) \in$ use_list[c]:

$$
\begin{array}{ll}
\text { add }(f(t)=f(s)) \text { to } \mathcal{U} & \text { if lookup }\left(f, c^{\prime}\right)=f(s) \\
\text { lookup }\left(f, c^{\prime}\right) \stackrel{\text { def }}{=} f(t) & \text { if lookup }\left(f, c^{\prime}\right)=\perp
\end{array}
$$

Update use_list accordingly.

- Example:

$\stackrel{Z}{\ominus}$

$$
\text { use_list }[z]=[f(z)]
$$

$\stackrel{\ominus}{x}$

Uninterpreted Functions (continued)

- If the representative constant c changes to c^{\prime}
- For all $f(t) \in$ use_list[c]:

$$
\begin{array}{ll}
\text { add }(f(t)=f(s)) \text { to } \mathcal{U} & \text { if lookup }\left(f, c^{\prime}\right)=f(s) \\
\text { lookup }\left(f, c^{\prime}\right) \stackrel{\text { def }}{=} f(t) & \text { if lookup }\left(f, c^{\prime}\right)=\perp
\end{array}
$$

Update use_list accordingly.

- Example:

$$
\text { use_list }[z]=[f(z)]
$$

Uninterpreted Functions (continued)

- If the representative constant c changes to c^{\prime}
- For all $f(t) \in$ use_list[c]:

$$
\begin{array}{ll}
\text { add }(f(t)=f(s)) \text { to } \mathcal{U} & \text { if lookup }\left(f, c^{\prime}\right)=f(s) \\
\text { lookup }\left(f, c^{\prime}\right) \stackrel{\text { def }}{=} f(t) & \text { if lookup }\left(f, c^{\prime}\right)=\perp
\end{array}
$$

Update use_list accordingly.

- Example:

$$
\text { use_list }[z]=[\quad]
$$

Constant Propagation and Simplification

- For each equivalence class in \mathcal{U}
- Track theory-specific constants (e.g., numerical) in \mathcal{U}
- W.I.o.g., one constant per equivalence class (otherwise contradictory)
- For sub-term-closed pool of expressions encountered so far:
- substitute constants for sub-terms
- simplify and add respective equivalence, e.g., $(x \& 0)=0$

Limited Term Rewriting, Application of Axioms

- Apply term-rewriting rules, e.g.,

$$
\frac{c \neq 0 \bmod 2^{m}}{(x+c) \neq x} \quad \frac{c=0 \bmod 2^{m}}{(x+c)=x} \quad \frac{1 \leq c<m}{(t \ll c)=\left(2^{c} \cdot t\right)}
$$

(for m-bit variables x) if respective terms are encountered.

- Apply theory-specific axioms, e.g.,

$$
\frac{t_{1}=t_{2} \& t_{3}}{t_{1} \leq t_{2} \quad t_{1} \leq t_{3}} \quad \frac{t_{1}=t_{2} \mid t_{3}}{t_{1} \geq t_{2} \quad t_{1} \geq t_{3}} \quad \frac{t_{1}+t_{2}=t_{1}}{t_{2}=0}
$$

Important: These rules do not introduce non-logical symbols

Derived edges, Proof of inconsistency

- Keep track of premises for inferred equivalences!

A proof of inconsistency consists of

- a contradictory cycle (contains \leq and $<$ or $=$ and exactly one \neq)
- premises for all derived edges

Interpolation

- Intuition: Split proof into facts contributed by A and B, respectively!

$$
(x \geq y) \wedge(y \geq v) \quad(v \geq u) \wedge(u \geq x) \wedge(x \neq y)
$$

- A fact is a maximal path in which all edges have the same colour:

$$
x \geq v, v \geq x, x=y, x \neq y
$$

Interpolation (continued)

- An interpolant can be seen as assume-guarantee reasoning:
A guarantees $x=y$ iff B does not violate $v \geq x$

- Interpolant:

$$
x=y \vee \neg(v \geq x)
$$

Split the proof of inconsistency into two components \mathcal{I} and \mathcal{J} :

- \mathcal{J} : A set of tuples $\langle P, t=s\rangle$
- P contains "all A-coloured facts needed to justify $t=s$ "
- $P \subseteq \mathcal{I}$
- \mathcal{I} : A set of A-"coloured" facts.
- \mathcal{J} contains "all B-coloured facts needed to justify $(t=s) \in \mathcal{I}$ "

Interpolation and Premises

- B-premise of $(t=s)$:
"all B-coloured facts needed to justify $(t=s)$ "
- Example:

B-premise $(\mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{y})))=\{u=g(z), w=y\}$
- Definition of A-premise is symmetric

Interpolation and Premises (continued)

- Conditions:

- Premises:
A-premise $\left(v_{i} \stackrel{ }{\Longrightarrow} v_{j}\right) \stackrel{\text { def }}{=}$
(A-condition for $\left.v_{i} \xrightarrow{=} v_{j}\right) \cup$
$\bigcup\left\{A\right.$-premise $\left(v_{n} \rightarrow v_{m}\right) \mid v_{n} \rightarrow v_{m} \in\left(B\right.$-condition for $\left.\left.v_{i} \stackrel{ }{\rightrightarrows} v_{j}\right)\right\}$

Interpolant for \mathcal{I} and

$$
I \stackrel{\text { def }}{=} \bigwedge_{v_{i} \triangleright v_{j} \in \mathcal{I}}\left(t_{i} \triangleright t_{j}\right) \vee \underbrace{\bigvee_{\substack{\left\langle P, v_{n} \triangleright v_{m}\right\rangle \in \mathcal{J}}}\left(\bigwedge_{\left(v_{i} \triangleright{ }_{P} v_{j}\right) \in P}\left(t_{i} \triangleright_{P} t_{j}\right)\right) \wedge \neg\left(t_{n} \triangleright t_{m}\right)}_{\text {"challenges" B to "break the contract" }}
$$

B can either

- try to pretend that one $\neg\left(t_{n} \triangleright t_{m}\right)$ holds and contradict itself
- admit that all $\left(t_{n} \triangleright t_{m}\right)$ hold and contradict $\bigwedge_{v_{i} \mapsto v_{j} \in \mathcal{I}}\left(t_{i} \triangleright t_{j}\right)$

Example revisited

$$
(x=y) \wedge(y \neq 0) \wedge\left(y^{\prime}=y \&(y-1)\right) \wedge\left(x \geq y^{\prime}\right) \wedge\left(y^{\prime} \neq 0\right) \wedge\left(y^{\prime \prime}=y^{\prime} \&\left(y^{\prime}-1\right)\right)
$$

$$
\neg\left(x \geq y^{\prime \prime}\right)
$$

Interpolant: $x \geq y^{\prime \prime} \vee x \geq y^{\prime \prime}$

Conclusion

- New interpolating decision procedure
- algorithmic description (vs. axiomatic in [McMillan 05])
- based on work by [Nieuwenhuis, Oliveras 05], McMillan, [Fuchs, Goel, Grundy, Krstić, Tinelli 09].
- Sound for bit-vector semantics (not a bit-vector decision procedure!)
- "Good-enough" philosophy:

Avoid using a complete decision system for arithmetic in favour of ad-hoc treatment of ground terms

- Implemented interpolation-based model checker Wolverine
- Decision procedure is sufficient for typical Windows device driver examples (kbfiltr, floppy, mouclass, ...)

Outlook

- Interpolant Strength
V. D'Silva, D. Kroening, M. Purandare, G. Weissenbacher VMCAI, January 2010, Madrid (co-located with POPL)
- Generating interpolants of different strength wrt. the implication order

Computing I and

```
    1: let \(\mathcal{G}\left(V_{A} \cap V_{B}, E_{A} \cup E_{B}\right)\) be the factorised and contracted proof
    2: let \(E_{C}\) be the facts in the contradictory cycle of \(\mathcal{G}\)
    3: \(\mathcal{W}:=E_{C}, \mathcal{I}:=\emptyset, \mathcal{J}:=\emptyset\)
    4: while \((\mathcal{W} \neq \emptyset)\) do
    5: remove \(v_{i} \rightarrow v_{j}\) from \(\mathcal{W}\)
    6: \(\quad\) if \(v_{i} \rightarrow v_{j}\) is \(B\)-coloured then
    7: \(\quad P:=A\)-premise \(\left(v_{i} \rightarrow v_{j}\right)\)
    8: \(\quad \mathcal{J}:=\mathcal{J} \cup\left\{\left\langle P, v_{i} \rightarrow v_{j}\right\rangle\right\}\)
    9: else
    10: \(\quad P:=B\)-premise \(\left(v_{i} \rightarrow v_{j}\right)\)
    11: \(\quad \mathcal{I}:=\mathcal{I} \cup\left\{v_{i} \rightarrow v_{j}\right\}\)
12: end if
13: \(\quad \mathcal{W}:=\mathcal{W} \cup P\)
14: end while
```

