An Interpolating Decision Procedure for Transitive Relations with Uninterpreted Functions

Georg Weissenbacher (白傑岳)

University of Oxford and ETH Zurich

UNU IIST, Macau, 6th of January, 2010

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

▲□▶ ▲□

Motivation

Prevent bad things from happening

G. Weissenbacher (Oxford, ETHZ)

Interpolation for EUF + \leq , <

* E > * E >

A certain bad thing is not supposed to happen ≡ assert(¬bad thing) ≡ safety/reachability property

∃ ► < ∃ ►</p>

A certain bad thing is not supposed to happen = assert(¬bad thing) = safety/reachability property

Assertions:

- Supported by main-stream languages such as ANSI-C, C++, Java
- Widely accepted by programmers
- Easy to generate (buffer overflows, division by 0, etc.)

4 3 5 4 3

A certain bad thing is not supposed to happen = assert(¬bad thing) = safety/reachability property

Assertions:

- Supported by main-stream languages such as ANSI-C, C++, Java
- Widely accepted by programmers
- Easy to generate (buffer overflows, division by 0, etc.)

Prove safety of program or find counterexample using Model Checking

- Part I: Interpolant-based model checking
 - Background (predicate transformers, interpolants, safety invariants)
 - Example
- Part II: An interpolating decision procedure
 - A proof-generating decision procedure
 - Deriving interpolants from proofs

- Program assertions represented by predicates
- $\{P\}$ instruction $\{Q\}$

"if P holds, Q will hold after instruction terminates"

• Example of a Hoare rule:

$$\frac{1}{\{P[x/expr]\} :=expr \{P\}}$$
 assignment

글 🕨 🖌 글 🕨

- Program assertions represented by predicates
- $\{P\}$ instruction $\{Q\}$

"if P holds, Q will hold after instruction terminates"

• Example of a Hoare rule:

$${P[x/expr]} x:=expr {P}$$
 assignment

Alternative view: Instructions represented by predicates

$$\begin{array}{rcl} P(x) & \wedge & T(x,x') & \Rightarrow & Q(x') \\ (x=5) & \wedge & (x'=x+1) & \Rightarrow & (x'\neq 5) \end{array}$$

A B F A B F

• Strongest post-condition:

$$\{P\} x := \exp r; \{Q\} \qquad Q \equiv (\exists x . P \land x' = \exp r)$$

- $\{P\} [expr] \{Q\} \qquad Q \equiv P \land expr$
- Weakest pre-condition:

$$\begin{array}{ll} \{P\} \ {\tt x} := {\tt expr}; \ \{{\tt Q}\} & P \equiv Q[x/{\tt expr}] \\ \{P\} \ [{\tt expr}] \ \{{\tt Q}\} & P \equiv {\tt expr} \Rightarrow Q \end{array}$$

• Composition rule for two sub-paths π_1 and π_2 :

$$\frac{\{P\} \ \pi_1 \ \{Q\}, \ \{Q\} \ \pi_2 \ \{R\}}{\{P\} \ \pi_1 \ ; \pi_2 \ \{R\}} \text{ composition}$$

• Loops: *Fixed-point* computation (cf. Dijkstra) "good invariants" are hard to find

Image: A image: A

SP: $(x > 0) \land y = x$ WP: y + 1 > y

Interpolation for EUF + < , <

*ロト *部ト *注ト *注ト - 注

SP: $(x > 0) \land z = y + 1$ WP: z = y

G. Weissenbacher (Oxford, ETHZ)

Interpolation for EUF + \leq , <

A 10

3

SP: $(x > 0) \land z = y + 1$ WP: z = y $(z = y + 1) \land (z = y) \Rightarrow$ false

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Infeasible paths (continued)

SP: $(x > 0) \land z = y + 1$

WP: z = y

G. Weissenbacher (Oxford, ETHZ)

Interpolation for EUF + < , <

Macau, 6th of January, 2010 9 / 44

★ 3 → < 3</p>

Infeasible paths (continued)

 $SP: (x > 0) \land z = y + 1 \Rightarrow z \neq y$ WP: z = y

G. Weissenbacher (Oxford, ETHZ)

Interpolation for EUF + < , <

Macau, 6th of January, 2010 9 / 44

★ 3 → < 3</p>

"Traditional" definition [William Craig, 57]:

- $A \Rightarrow I \Rightarrow C$
- all non-logical symbols in I occur in A as well as in C

What is a Craig interpolant?

Common definition for automated verification:

- $A \Rightarrow I$ and $I \land B$ inconsistent
- all non-logical symbols in I occur in A as well as in B

11/44

G. Weissenbacher (Oxford, ETHZ)

... and how can we apply it for verification?

Over-approximation of reachable *safe states* in a program:

- T_{ℓ} : transition function for each location $\ell \in \{1, 2, 3, ...\}$
- $T_1(x_1, x_2) \wedge T_2(x_2, x_3)$ symbolic representation of (infeasible) path
- $T_1(x_1, x_2) \Rightarrow I(x_2) \quad I(x_2) \land T_2(x_2, x_3)$ inconsistent

Safety Invariant, Covered Nodes

- Safety Invariant: $I \land T \Rightarrow I'$ and "bad" locations are labelled "false"
- If $I_3 \Rightarrow I_2$ then the node labelled " I_3 " and its successors are covered

A small example: Wegner's bit-counting algorithm.

Representation as control flow graph (CFG):

G. Weissenbacher (Oxford, ETHZ)

Interpolation for EUF + < , <

・ロト ・ 母 ト ・ ヨ ト ・ ヨ

$$(x = y) \land (y \neq 0) \land (y' = y \& (y - 1)) \land (\neg (x \ge y'))$$

Step	SP	ITP	¬₩₽
1	x = y	x = y	$(x \ge y \& (y-1)) \lor (y=0)$
2			
3			
4			

-2

$$(x = y) \land (y \neq 0) \land (y' = y\&(y-1)) \land (\neg(x \ge y'))$$

Step	SP	ITP	¬WP
1	x = y	x = y	$(x \ge y \& (y-1)) \lor (y=0)$
2	$x = y \land y \neq 0$	x = y	$(x \ge y \& (y-1))$
3			
4			

$$(x = y) \land (y \neq 0) \land (y' = y \& (y - 1)) \land (\neg (x \ge y'))$$

Step	SP	ITP	¬₩P
1	x = y	x = y	$(x \ge y \& (y-1)) \lor (y=0)$
2	$x = y \land y \neq 0$	x = y	$(x \ge y \& (y-1))$
3	$y' = x\&(x-1) \land x \neq 0$	$x \ge y'$	$x \ge y'$
4			

伺 ト イ ヨ ト イ ヨ ト

-2

$$(x = y) \land (y \neq 0) \land (y' = y \& (y - 1)) \land (\neg (x \ge y'))$$

Step	SP	ITP	¬ WP
1	x = y	x = y	$(x \ge y \& (y-1)) \lor (y=0)$
2	$x = y \land y \neq 0$	x = y	$(x \ge y \& (y-1))$
3	$y' = x\&(x-1) \land x \neq 0$	$x \ge y'$	$x \ge y'$
4	false	false	false

伺 ト イ ヨ ト イ ヨ ト

-2

$$(x = y) \land (y \neq 0) \land (y' = y \& (y - 1)) \land (\neg (x \ge y'))$$

Step	SP	ITP	¬WP
1	x = y	x = y	$(x \ge y \& (y-1)) \lor (y=0)$
2	$x = y \land y \neq 0$	x = y	$(x \ge y \& (y-1))$
3	$y' = x\&(x-1) \land x \neq 0$	$x \ge y'$	$x \ge y'$
4	false	false	false

A small example (now with interpolants)

(* (B)) * (B))

A 10

3

Unwinding the CFG further...

3

Path prefix:

$$(x = y) \land (y \neq 0) \land (y' = y \& (y-1)) \land (x \ge y') \land (y' \neq 0) \land (y'' = y' \& (y'-1))$$

Assertion:

$$\neg (x \ge y'')$$

Interpolant:

$$x \ge y''$$

follows from:

 $x \ge y', \ (y'' = y' \& (y' - 1))$ implies $(y' \ge y'')$, and transitivity

Strongest post-condition: (by means of substitution)

$$y'' = (x\&(x-1))\&((x\&(x-1))-1)\land(x \neq 0)\land(x\&(x-1)\neq 0)$$

Succeeded to prove safety!

Interpolation for EUF + \leq , <

- Given a sequence of transitions $T_0 \wedge T_1 \wedge \ldots \wedge T_n$
- let I_i be the interpolant for

$$T_0 \wedge T_1 \wedge \ldots \wedge T_{i-1}$$
 and $T_i \wedge \ldots \wedge T_{n-1} \wedge T_n$

then it has to hold that

$$I_0 = \text{true}$$
$$I_{n+1} = \text{false}$$
$$\forall i \in \{1, n\} . I_i \land T_i \Rightarrow I_{i+1}$$

Currently:

- Boolean connectives
- Equality
- Uninterpreted functions
- Difference logic, linear arithmetic

Problem: Programs have *bit-vector* semantics and bit-vector operations.

$$a > b + 2 \land a \leq b$$

• Unsatisfiable in the theory of linear arithmetic $(\mathbb{R}, \mathbb{Z}, ...)$

3 1 4 3

Currently:

- Boolean connectives
- Equality
- Uninterpreted functions
- Difference logic, linear arithmetic

Problem: Programs have *bit-vector* semantics and bit-vector operations.

$$a > b + 2 \land a \leq b \qquad \{a \mapsto 2, b \mapsto 2\}$$

• Unsatisfiable in the theory of linear arithmetic $(\mathbb{R}, \mathbb{Z}, ...)$

• Satisfiable if a and b are 2-bit bit-vectors

• Provide proof-generating decision procedure for conjunctions of

- Strict and weak inequalities (<, ≤)
- Equalities and dis-equalities (=, ≠)
- both with uninterpreted functions (UF)
- Deal with theory specific terms in an ad-hoc manner
 - Constant propagation
 - Simplify ground terms (bit-level accurate)
 - Limited application of theory axioms

Propositional structure can be dealt with using SMT and [Yorsh + Musuvathi, 05]

(* (B)) * (B))

3

Weak and strong inequalities

- Add all facts s < t and $s \leq t$ to directed graph G
- Compute Strongly Connected Components (SCCs)

- If SCC contains an edge *s* < *t*:
 - find shortest path from s to t
 - report contradictory cycle
- Otherwise: For each $s \leq t$ in SCC
 - add s = t as a fact

- Add all facts s = t to graph-based **Union-Find** data structure U
- Modify Find-operation / path-compression:
 - remember the 2 edges entailing shortcut
- Modify Union-operation:
 - triangulate sub-graph $s \operatorname{rep}(s) \operatorname{rep}(t) t$
- Perform query for each $s \neq t$

Interpolation for EUF + \leq , <

- Proof-producing congruence closure [Nieuwenhuis, Oliveras 05]
- Observation:

$$f(t) = f(s)$$

A B F A B F

- Based on Union-Find data structure U:
 - Maintain a use_list of encountered terms f(t) that "use" c

• For each *f*(*c*)

$$lookup(f, c) = \begin{cases} f(t) & \text{an element which maps to } f(c) \\ \bot & otherwise \end{cases}$$

For all f(t) ∈ use_list[c]:

add (f(t) = f(s)) to \mathcal{U} if lookup(f, c') = f(s) $lookup(f, c') \stackrel{\text{def}}{=} f(t)$ if $lookup(f, c') = \bot$

Update use_list accordingly.

• For all $f(t) \in use_list[c]$:

add
$$(f(t) = f(s))$$
 to \mathcal{U} if $lookup(f, c') = f(s)$
 $lookup(f, c') \stackrel{\text{def}}{=} f(t)$ if $lookup(f, c') = \bot$

Update use_list accordingly.

Example:

$$\texttt{use_list}[\mathbf{z}] = [f(z)]$$

• For all $f(t) \in use_list[c]$:

add
$$(f(t) = f(s))$$
 to \mathcal{U} if $lookup(f, c') = f(s)$
 $lookup(f, c') \stackrel{def}{=} f(t)$ if $lookup(f, c') = \bot$

Update use_list accordingly.

Example:

$$\texttt{use_list}[z] = [f(z)]$$

• For all $f(t) \in use_list[c]$:

add
$$(f(t) = f(s))$$
 to \mathcal{U} if $lookup(f, c') = f(s)$
 $lookup(f, c') \stackrel{\text{def}}{=} f(t)$ if $lookup(f, c') = \bot$

Update use_list accordingly.

• Example:

$$use_list[z] = [$$
]

- For each equivalence class in $\ensuremath{\mathcal{U}}$
 - Track *theory-specific* constants (e.g., numerical) in \mathcal{U}
 - W.I.o.g., one constant per equivalence class (otherwise contradictory)
- For sub-term-closed pool of expressions encountered so far:
 - substitute constants for sub-terms
 - *simplify* and add respective equivalence, e.g., (*x*&0) = 0

Apply term-rewriting rules, e.g.,

$$\frac{c \neq 0 \mod 2^m}{(x+c) \neq x} \qquad \frac{c = 0 \mod 2^m}{(x+c) = x} \qquad \frac{1 \leq c < m}{(t < c) = (2^c \cdot t)}$$

(for *m*-bit variables x) if respective terms are encountered.

Apply theory-specific axioms, e.g.,

$$\frac{t_1 = t_2 \& t_3}{t_1 \le t_2 \quad t_1 \le t_3} \qquad \frac{t_1 = t_2 \mid t_3}{t_1 \ge t_2 \quad t_1 \ge t_3} \qquad \frac{t_1 + t_2 = t_1}{t_2 = 0}$$

Important: These rules do not introduce non-logical symbols

• Keep track of premises for inferred equivalences!

A proof of inconsistency consists of

- a contradictory cycle (contains \leq and < *or* = and exactly one \neq)
- premises for all derived edges

Intuition: Split proof into facts contributed by A and B, respectively!

• A *fact* is a maximal path in which all edges have the same colour: $x \ge v, v \ge x, x = y, x \ne y$ • An interpolant can be seen as assume-guarantee reasoning:

A guarantees x = y iff B does not violate $v \ge x$ $u \qquad \leq v \\ v \\ \downarrow \lor \qquad \downarrow y \\ x \qquad = y \\ \neq y$

Interpolant:

$$\mathbf{x} = \mathbf{y} \lor \neg (\mathbf{v} \ge \mathbf{x})$$

Split the **proof of inconsistency** into two components \mathcal{I} and \mathcal{J} :

- \mathcal{J} : A set of tuples $\langle P, t = s \rangle$
 - P contains "all A-coloured facts needed to justify t = s"
 - $P \subseteq \mathcal{I}$
- \mathcal{I} : A set of *A*-"coloured" facts.
 - \mathcal{J} contains "all *B*-coloured facts needed to justify $(t = s) \in \mathcal{I}$ "

• *B*-premise of (t = s):

"all *B*-coloured facts needed to justify (t = s)"

• Example:

B-premise(f(x)=f(g(y))) = {u = g(z), w = y}

• Definition of A-premise is symmetric

Conditions:

Premises:

 $\begin{array}{l} A\text{-premise} \left(v_i \stackrel{=}{\to} v_j\right) \stackrel{\text{def}}{=} \\ (A\text{-condition for } v_i \stackrel{=}{\to} v_j) \cup \\ \bigcup \{A\text{-premise} \left(v_n \rightarrow v_m\right) \mid v_n \rightarrow v_m \in (\text{B-condition for } v_i \stackrel{=}{\to} v_j)\} \end{array}$

$$I \stackrel{\text{def}}{=} \bigwedge_{v_i \stackrel{\triangleright}{\to} v_j \in \mathcal{I}} (t_i \triangleright t_j) \lor \bigvee_{(P, v_n \stackrel{\triangleright}{\to} v_m) \in \mathcal{J}} \left(\bigwedge_{(v_i \stackrel{\triangleright P}{\to} v_j) \in P} (t_i \triangleright_P t_j) \right) \land \neg (t_n \triangleright t_m)$$

"challenges" B to "break the contract"

B can either

- try to pretend that one $\neg(t_n \triangleright t_m)$ holds and contradict itself
- admit that all $(t_n \triangleright t_m)$ hold and contradict $\bigwedge_{v_i \mapsto v_i \in \mathcal{I}} (t_i \triangleright t_j)$

 $(x = y) \land (y \neq 0) \land (y' = y \& (y-1)) \land (x \ge y') \land (y' \neq 0) \land (y'' = y' \& (y'-1))$

 $\neg (x \geq y'')$

Interpolant: $x \ge y'' \lor x \ge y''$

G. Weissenbacher (Oxford, ETHZ)

Interpolation for EUF + < , <

3

- New interpolating decision procedure
 - algorithmic description (vs. axiomatic in [McMillan 05])
 - based on work by [Nieuwenhuis, Oliveras 05], McMillan, [Fuchs, Goel, Grundy, Krstić, Tinelli 09].
- Sound for bit-vector semantics (not a bit-vector decision procedure!)
- "Good-enough" philosophy: Avoid using a complete decision system for arithmetic in favour of ad-hoc treatment of ground terms
 - Implemented interpolation-based model checker WOLVERINE
 - Decision procedure is sufficient for typical Windows device driver examples (kbfiltr, floppy, mouclass, ...)

A B M A B M

Interpolant Strength

V. D'Silva, D. Kroening, M. Purandare, G. Weissenbacher VMCAI, January 2010, Madrid (co-located with POPL)

• Generating interpolants of different strength wrt. the implication order

3 🕨 🖌 3

Computing $\mathcal I$ and $\mathcal J$

1: let $\mathcal{G}(V_A \cap V_B, E_A \cup E_B)$ be the factorised and contracted proof 2: let E_C be the facts in the contradictory cycle of \mathcal{G} 3: $\mathcal{W} := E_C, \ \mathcal{I} := \emptyset, \ \mathcal{J} := \emptyset$ 4: while $(\mathcal{W} \neq \emptyset)$ do 5: remove $v_i \rightarrow v_i$ from \mathcal{W} if $v_i \rightarrow v_i$ is *B*-coloured then 6: P := A-premise $(\mathbf{v}_i \rightarrow \mathbf{v}_i)$ 7: $\mathcal{J} := \mathcal{J} \cup \{ \langle \boldsymbol{P}, \boldsymbol{v}_i \to \boldsymbol{v}_i \rangle \}$ 8: else 9: P := B-premise ($v_i \rightarrow v_i$) 10: $\mathcal{I} := \mathcal{I} \cup \{\mathbf{v}_i \to \mathbf{v}_i\}$ 11: 12: end if 13: $\mathcal{W} := \mathcal{W} \cup P$ 14: end while