Software Model Checking

 withPredicate Abstraction, Interpolation, \& IC3

Johannes Birgmeier, Aaron Bradley, Georg Weissenbacher

Challenges in (Software) Model Checking

1. Finding Inductive Invariants
2. Scalability (State Space Explosion)

How we will address these challenges

Part I: IC3

Incremental Construction of Inductive Clauses for Indubitable Correctness

- Verification of finite state systems
- Aaron Bradley SAT-Based Model Checking without Unrolling [VMCAl'11]
- Given: Finite State Transition System
- Initial states $I \subseteq S$
- Transition relation $T \subseteq S \times S$
- Safety property P

Incremental Construction of Inductive Clauses for Indubitable Correctness

- Verification of finite state systems
- Aaron Bradley SAT-Based Model Checking without Unrolling [VMCAl'11]
- Given: Finite State Transition System
- Initial states $I \subseteq S$
- Transition relation $T \subseteq S \times S$
- Safety property P
- Goal: Inductive invariant F
- $I(s) \Rightarrow F(s)$,
- $F(s) \wedge T\left(s, s^{\prime}\right) \Rightarrow F\left(s^{\prime}\right)$
- $F(s) \Rightarrow P(s)$

IC3

Approach: Construct sequence $F_{0}, F_{1}, \ldots, F_{k}$ of candidates

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

IC3

Approach: Construct sequence $F_{0}, F_{1}, \ldots, F_{k}$ of candidates

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

(1) F_{0} represents the initial states

IC3

Approach: Construct sequence $F_{0}, F_{1}, \ldots, F_{k}$ of candidates

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

(1) F_{0} represents the initial states
$(2+4) F_{i}$ over-approximates states reachable in $\leq i$ steps

IC3

Approach: Construct sequence $F_{0}, F_{1}, \ldots, F_{k}$ of candidates

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

(1) F_{0} represents the initial states
$(2+4) F_{i}$ over-approximates states reachable in $\leq i$ steps
(3) All F_{i} are safe

Sequence $F_{0}, F_{1}, \ldots, F_{k}$ of candidates for invariant

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Important properties of algorithm:

- New frame F_{k+1} is added if F_{k} is "safe", k increased
- Over-approximation $F_{0}, F_{1}, \ldots, F_{k}$ is refined incrementally
- Inductiveness is primary goal

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Step 1: Check whether $I \Rightarrow P$ and $I \wedge T \Rightarrow P^{\prime}$

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Step 1: Check whether $I \Rightarrow P$ and $I \wedge T \Rightarrow P^{\prime}$

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Step 1: Check whether $I \Rightarrow P$ and $I \wedge T \Rightarrow P^{\prime}$
\checkmark Expand: Add $F_{1} \Leftrightarrow P$ to sequence of frames F_{0}, \ldots

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Step 2: Check whether $F_{1} \wedge T \Rightarrow P^{\prime}$

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Step 2: Check whether $F_{1} \wedge T \Rightarrow P^{\prime}$
x There's a state s such that $F_{1} \wedge s \wedge T \wedge \neg P^{\prime}$

IC3: Consecution

What do we know about s ?

- $s \notin F_{0}$, otherwise would have discovered s earlier

IC3: Consecution

What do we know about s ?

- $s \notin F_{0}$, otherwise would have discovered s earlier

Try to show that s is unreachable from F_{0} :

- $\underbrace{F_{0} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}}_{\text {consecution check }}$

IC3: Consecution

What do we know about s ?

- $s \notin F_{0}$, otherwise would have discovered s earlier

Try to show that s is unreachable from F_{0} :

- $\underbrace{F_{0} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}}_{\text {consecution check }}$
- If this doesn't hold, s has a predecessor in F_{0} z

IC3: Consecution

What do we know about s ?

- $s \notin F_{0}$, otherwise would have discovered s earlier

Try to show that s is unreachable from F_{0} :

- $\underbrace{F_{0} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}}_{\text {consecution check }}$
- If this holds, s is inductive relative to F_{0}

IC3: Relative Inductiveness

$$
F_{0} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}
$$

- We can replace F_{1} with $F_{1} \wedge \neg s$

IC3: Relative Inductiveness

$$
F_{0} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}
$$

- We can replace F_{1} with $F_{1} \wedge \neg s$
- But that would only eliminate one state!

IC3: Generalization

Could eliminate s from F_{1}. But we can do better!

- Try to generalize s :
$\checkmark F_{0} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}$
- Find $c \subseteq \neg s$ such that $F_{0} \wedge c \wedge T \Rightarrow c^{\prime}$ (consider subsets of clause $\neg s$)

IC3: Generalization

Could eliminate s from F_{1}. But we can do better!

- Try to generalize s :
$\checkmark F_{0} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}$
- Find $c \subseteq \neg s$ such that $F_{0} \wedge c \wedge T \Rightarrow c^{\prime}$ (consider subsets of clause $\neg s$)
- $F_{1}:=F_{1} \wedge c$

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Once no more bad states reachable from F_{1}, expand. . .

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Once no more bad states reachable from F_{2}, expand...

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Once no more bad states reachable from F_{2}, expand. . .

$$
\begin{align*}
& I \Leftrightarrow F_{0} \tag{1}\\
& \forall 0 \leq i<k . F_{i} \Rightarrow F_{i+1} \tag{2}\\
& \forall 0 \leq i \leq k . F_{i} \Rightarrow P \tag{3}\\
& \forall 0 \leq i<k . F_{i} \wedge T \Rightarrow F_{i+1}^{\prime} \tag{4}
\end{align*}
$$

Until we eventually reach a fixed point.

IC3

Does this work for software?
Yes; simply replace SAT solver with SMT solver, but:

- State space much larger or infinite
- Will painstakingly eliminate single/small sets of states
- High risk of divergence

Part II: Predicate Abstraction

Predicate Abstraction: A Form of Abstract Interpretation

- Map concrete states to abstract states
- Reduce size of state space
- Obtain finite representation

Abstract domain

Concrete domain

Abstract Domain: Set of Predicates

Map concrete states to abstract states by evaluating predicates:

- Concrete variable: i
- Predicates: $b_{1} \equiv(i \neq 0)$ and $b_{2} \equiv(i \leq 10)$

Abstract domain

Concrete domain

Predicate Abstraction: Explicit Abstract Transition Relation

Example: Abstraction of $\mathrm{i}++$ and $b_{1} \widehat{=}(\mathrm{i} \neq 0)$

- We have to account for all possibilities!

Predicate Abstraction: Explicit Abstract Transition Relation

Example: Abstraction of $\mathrm{i}++$ and $b_{1} \widehat{=}(\mathrm{i} \neq 0)$

- We have to account for all possibilities!
- Even if there is just a single transition from $i \neq 0$ to $i=0$!

Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation

- requires many calls to SMT solver
- is computationally expensive

Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation

- requires many calls to SMT solver
- is computationally expensive
- contrary to the spirit of IC3 (focus on single states)

Predicate Abstraction IC3 Style

Construction of explicit abstract transition relation

- requires many calls to SMT solver
- is computationally expensive
- contrary to the spirit of IC3 (focus on single states)

Abstraction of single states is computationally cheap!

- Predicates: $b_{1} \equiv(i \neq 0), b_{2} \equiv(i \leq 10)$

Abstract domain

Concrete domain

Predicate Abstraction IC3 Style

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula

Predicate Abstraction IC3 Style

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s : concrete predecessor of bad state

Predicate Abstraction IC3 Style

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s : concrete predecessor of bad state

Check consecution for s:

$$
F_{1} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}
$$

Predicate Abstraction IC3 Style

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s: concrete predecessor of bad state

Check consecution for s :

$$
F_{1} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}
$$

If s not relative inductive, proceed with predecessor t

Predicate Abstraction / Abstract Consecution

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s: concrete predecessor of bad state

Consecution:

$$
F_{1} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime}
$$

Predicate Abstraction / Abstract Consecution

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s: concrete predecessor of bad state

Abstract Consecution:

$$
\begin{aligned}
& F_{1} \wedge \neg \hat{\boldsymbol{s}} \wedge T \Rightarrow \neg \hat{\mathbf{s}}^{\prime} \\
& F_{1} \wedge \neg \boldsymbol{s} \wedge T \Rightarrow \neg \boldsymbol{s}^{\prime}
\end{aligned}
$$

Predicate Abstraction / Abstract Consecution

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s: concrete predecessor of bad state

Abstract Consecution:

$$
\begin{aligned}
& F_{1} \wedge \neg \hat{\boldsymbol{s}} \wedge T \Rightarrow \neg \hat{\boldsymbol{s}}^{\prime} \\
& F_{1} \wedge \neg \boldsymbol{s} \wedge T \Rightarrow \neg \boldsymbol{s}^{\prime}
\end{aligned}
$$

Predicate Abstraction / Abstract Consecution

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s: concrete predecessor of bad state

Check abstract consecution (instead of concrete):

$$
F_{1} \wedge \neg \hat{s} \wedge T \Rightarrow \neg \hat{\mathbf{s}}^{\prime}
$$

Predicate Abstraction / Abstract Consecution

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s: concrete predecessor of bad state

Check abstract consecution (instead of concrete):

$$
F_{1} \wedge \neg \hat{s} \wedge T \Rightarrow \neg \hat{s}^{\prime}
$$

Replace F_{2} with $F_{2} \wedge c$, where clause $c \subseteq \neg \hat{s}$

Abstract Consecution Failure

- $F_{0}, F_{1}, \ldots F_{k}$: CNF over predicates
- Transition relation T : program as SMT formula
- state s: concrete predecessor of bad state

Check consecution:

$$
F_{1} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime} \quad x
$$

But what if abstract consecution fails?

Abstract Consecution Failure

$$
\begin{aligned}
& F_{1} \wedge \neg \hat{s} \wedge T \Rightarrow \neg \hat{s}^{\prime} X \\
& F_{1} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime} \downarrow
\end{aligned}
$$

Then \hat{s} has a concrete predecessor $t \in F_{1}$ that does not lead to s in one step.

Abstract Consecution Failure

$$
\begin{aligned}
& F_{1} \wedge \neg \hat{s} \wedge T \Rightarrow \neg \hat{s}^{\prime} X \\
& F_{1} \wedge \neg s \wedge T \Rightarrow \neg s^{\prime} \downarrow
\end{aligned}
$$

Then \hat{s} has a concrete predecessor $t \in F_{1}$ that does not lead to s in one step.

- Our abstract domain is too imprecise

Part III: Craig Interpolation

What is a Craig Interpolant?

Craig interpolant I for formula $A \Rightarrow B$:

- $A \Rightarrow I$ and $I \Rightarrow B$
- all non-logical symbols in I occur in A as well as in B

What is a Craig Interpolant?

Craig interpolant I for formula $A \Rightarrow B$:

- $A \Rightarrow I$ and $I \Rightarrow B$
- all non-logical symbols in / occur in A as well as in B

Can be provided by contemporary SMT solvers for many theories

Refinement for Abstract Consecution Failure

How to save the day with interpolants:

Refinement for Abstract Consecution Failure

How to save the day with interpolants:

Refinement for Abstract Consecution Failure

$F_{1} \wedge \neg \hat{s} \wedge T \Rightarrow \neg \hat{s}^{\prime} X$

$$
\underbrace{F_{1} \wedge \neg s \wedge T}_{A} \Rightarrow \underbrace{\neg s^{\prime}}_{B}
$$

How to save the day with interpolants:

1. Compute interpolant R^{\prime}

- $F_{1} \wedge \neg s \wedge T \Rightarrow R^{\prime}$
- $R^{\prime} \Rightarrow \neg s^{\prime}$

Refinement for Abstract Consecution Failure

How to save the day with interpolants:

1. Compute interpolant R^{\prime}

- $F_{1} \wedge \neg s \wedge T \Rightarrow R^{\prime}$
- $R^{\prime} \Rightarrow \neg s^{\prime}$

2. Add $\neg R$ to the abstract domain

- Note: $s \Rightarrow \neg R$, therefore $\hat{s} \wedge \neg R$ is new abstraction of s

Refinement for Abstract Consecution Failure

$$
\begin{aligned}
& F_{1} \wedge \neg \hat{s} \wedge T \Rightarrow \neg \hat{s}^{\prime} x \\
& \underbrace{F_{1} \wedge \neg s \wedge T}_{A} \Rightarrow \underbrace{\overbrace{}^{\prime}}_{B} \checkmark
\end{aligned}
$$

How to save the day with interpolants:

1. Compute interpolant R^{\prime}

- $F_{1} \wedge \neg s \wedge T \Rightarrow R^{\prime}$
- $R^{\prime} \Rightarrow \neg s^{\prime}$

2. Add $\neg R$ to the abstract domain

- Note: $s \Rightarrow \neg R$, therefore $\hat{s} \wedge \neg R$ is new abstraction of s

Refinement for Abstract Consecution Failure

$$
\begin{aligned}
& F_{1} \wedge(\neg \hat{\mathbf{s}} \vee R) \wedge T \Rightarrow(\neg{\left.\hat{\boldsymbol{s}^{\prime}} \vee R^{\prime}\right)}^{\underbrace{F_{1} \wedge \neg \boldsymbol{s} \wedge T}_{A} \Rightarrow \underbrace{\neg \boldsymbol{s}^{\prime}}_{B}} .
\end{aligned}
$$

How to save the day with interpolants:

1. Compute interpolant R^{\prime}

- $F_{1} \wedge \neg s \wedge T \Rightarrow R^{\prime}$
- $R^{\prime} \Rightarrow \neg s^{\prime}$

2. Add $\neg R$ to the abstract domain

- Note: $s \Rightarrow \neg R$, therefore $\hat{s} \wedge \neg R$ is new abstraction of s

Refinement IC3 Style

Refinement via Craig Interpolation

- without unrolling! (unlike most other SMC approaches)
- therefore extremely light-weight

Refinement IC3 Style

Refinement via Craig Interpolation

- without unrolling! (unlike most other SMC approaches)
- therefore extremely light-weight

Also: Refinement can be delayed!

- Spurious state may be eliminated later without refinement

Conclusion: IC3 + Predicate Abstraction + Interpolation

Conclusion: IC3 + Predicate Abstraction + Interpolation

Evaluation of prototype implementation:

- on InvGen, Dagger, "Beautiful Interpolants" benchmarks
- using mostly linear arithmetic
- solve substantially more problems than CPAChecker
- details in our CAV'14 paper!
- delaying refinement pays off (evaluated several strategies)

Conclusion: IC3 + Predicate Abstraction + Interpolation

Evaluation of prototype implementation:

- on InvGen, Dagger, "Beautiful Interpolants" benchmarks
- using mostly linear arithmetic
- solve substantially more problems than CPAChecker
- details in our CAV'14 paper!
- delaying refinement pays off (evaluated several strategies)

Lessons learned:

- Induction focus of IC3 successfully transferred to software
- Predicate abstraction in this setting is cheap
- Refinement doesn't require unrolling!

