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Abstract. Model checkers frequently fail to completely verify a concur-
rent program, even if partial-order reduction is applied. The verification
engineer is left in doubt whether the program is safe and the effort to-
wards verifying the program is wasted.

We present a technique that uses the results of such incomplete verifica-
tion attempts to construct a (fair) scheduler that allows the safe execu-
tion of the partially verified concurrent program. This scheduler restricts
the execution to schedules that have been proven safe (and prevents ex-
ecutions that were found to be erroneous). We evaluate the performance
of our technique and show how it can be improved using partial-order
reduction. While constraining the scheduler results in a considerable per-
formance penalty in general, we show that in some cases our approach—
somewhat surprisingly—even leads to faster executions.

1 Introduction

Automated verification of concurrent programs is inherently difficult because
of exponentially large state spaces [38]. State space reductions such as partial-
order reduction (POR) [10,17,16] allow a model checker to focus on a subset of all
reachable states while the verification result is valid for all reachable states. How-
ever, even reduced state spaces may be intractably large [17] and corresponding
programs infeasible to (automatically) verify, requiring manual intervention.

We propose a novel model checking approach for safety verification of po-
tentially non-terminating programs with a bounded number of threads, non-
deterministic scheduling, and shared memory. Our approach iteratively gener-
ates incomplete verification results (IVRs) to prove the safety of a program under
a (semi-)deterministic scheduler. The scheduling constraints induced by an IVR
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can be enforced by iteratively relaxed scheduling [29], a technique to enforce fine-
grained orderings of concurrent memory events. When the scheduling constraints
of an IVR are enforced, all executions (under all non-deterministic inputs) are
safe, even if the underlying (operating system) scheduler is non-deterministic.
Thereby, the program can be executed safely before a (potentially infeasible)
complete verification result is available. Executions can still exploit concurrency
and the number of memory accesses that are executed concurrently may even be
increased. As the model checking problem is eased, additional programs become
tractable. Furthermore, IVRs can be used to safely execute unsafe programs
which are safe under at least one scheduler. E.g., instead of programming syn-
chronization explicitly, our model checking algorithm can be used to synthesize
synchronization so that all executions are safe.

1 initially:
2 empty buffer of

size N
3 count = 0
4 mutex = 0
5 thread T1:
6 while true:
7 produce()
8 thread T2:
9 while true:

10 consume()

11 produce:
12 lock(mutex)
13 if count < N:
14 put item
15 count += 1
16 unlock(mutex)
17 consume:
18 lock(mutex)
19 remove item
20 count −= 1
21 unlock(mutex)

Fig. 1: Producer-consumer problem
with bug

We use the producer-consumer exam-
ple from Fig. 1 to explain our approach.
The verifier analyses an initial schedule,
e.g., where thread T1 and T2 produce and
consume in turns, and emits an IVR R1,
guaranteeing safe executions under this
schedule. With its second IVR, the verifier
might verify the correctness of producing
two items in a row and the scheduling con-
straints can be relaxed accordingly. When
the verifier hits an unsafe execution (the
consumer produces an underflow), it emits
an unsafe IVR for debugging. If the verifier accomplishes to analyze all possible
executions of the program, it will report the final result partially safe, as the pro-
gram can be used safely under all inputs but unsafe executions exist. Had there
been no unsafe or safe IVR, the final result would be safe or unsafe, respectively.

This paper shows how to instantiate our approach by answering these ques-
tions: 1. Which state space abstractions are suitable for iterative model checking?
The abstraction should be able to represent non-terminating executions and fa-
cilitate the extraction of schedules. 2. How to formalize and represent suitable
IVRs? IVRs should be as small as possible in order to allow short iterations,
while they must be large enough to guarantee fully functional executions under
all possible program inputs. More precisely, for every possible program input,
an IVR must cover a program execution. 3. What are suitable model checking
algorithms that can be adapted to produce IVRs? A suitable algorithm should
easily allow to select schedules for exploration.

2 Incomplete verification results

2.1 Basic definitions

A program P comprises a set S of states (including a distinct initial state) and a
finite set T of threads. Each state s ∈ S maps program counters and variables to
values. We use l(s) to denote the program location of a state s, which comprises



a local location lT (s) for each thread T ∈ T . W.l.o.g. we assume the existence
of a single error location that is only reachable if the program P is not safe.

A state formula φ is a predicate over the program variables encoding all
states s in which φ(s) evaluates to true. A transition relation R relates states s
and their successor states s′. Each tread T is partitioned into local transitions
Rl,l′ such that l = lT (s) and l′ = lT (s′) for all s, s′ satisfying Rl,l′(s, s

′) and
Rl,l′ leaves the program locations and variables of other threads unchanged. We
use Guard(R) to denote a predicate encoding ∃s′ . R(s, s′), e.g., Guard(R13,14)
is (count < N) for the transition from location 13 to 14 in Fig. 1. We say that
Rl,l′ (or T , respectively) is active at location l and enabled in a state s iff l(s) = l
and s satisifes Guard(R). Multiple transitions of a thread T at a location can
be active, but we allow only one transition R to be enabled at a given state and
define enabledT (s) := {R} if R exists and enabledT (s) := ∅ otherwise.

If there exist states s for which no transition of a thread T is enabled (e.g.,
in line 12 in Fig. 1), T may block. We assume that such locations lT (s) are
(conservatively) marked by may-block(lT (s)).

An execution is a sequence s0, T1, s1, . . . , where s0 is the initial state and
the states si and si+1 in every adjacent triple (si, Ti, si+1) are related by the
transition relation of Ti. An execution that does not reach the error location is
safe. A deadlock is a state s in which no transitions are enabled. W.l.o.g. we
assume that all finite executions correspond to deadlocks and are undesirable;
intentionally terminating executions can be modelled using terminal locations
with self-loops.

An execution τ is (strongly) fair if every thread Ti enabled infinitely often in
τ is also scheduled infinitely often [5]. We assume that fairness is desirable and
enforce it by our algorithm presented in Sec. 3. Other notions of fairness such
as weak fairness can be enforced analogously.

Non-determinism can arise both through scheduling and non-deterministic
transitions. A scheduler can resolve the former kind of non-determinism.

Definition 1 (scheduler). A scheduler ζ : (S×T )∗×S → T of a program P
is a function that takes an execution prefix s0, T1, . . . , Tn, sn and selects a thread
that is enabled at sn, if such a thread exists. A scheduler ζ is deadlock-free ( fair,
respectively) if all executions possible under ζ are deadlock-free (fair).

A scheduler for the program of Fig. 1, for instance, must select T1 rather
than T2 for the prefix sinit , T1, s1, T1, s2, T1, s3, T2, s4, T2, s5, since at that point
the lock is held by T1 and enabledT2

(s5) = ∅.
Non-deterministic transitions are the second source of non-determinism. If

Rl,l′ of thread T allows multiple successor states for a state s, we presume the
existence of input symbols X such that each ι ∈ X determines a unique successor
state s′ by selecting an Rιl,l′ ⊆ Rl,l′ with Rιl,l′(s, s

′).

Definition 2 (input). An input is a function χ : (S×T )∗ → X, which chooses
an input symbol depending on the current execution prefix.



In conjunction, an input and a scheduler render a program completely deter-
ministic: the input χ and scheduler ζ select a transition in each step such that
each adjacent triple (si, Ti+1, si+1) is uniquely determined.

For Partial Order Reduction (POR), we assume that a symmetric indepen-
dence relation ‖ on transitions of different threads is given, which induces an
equivalence relation on executions. Two transitions R1 and R2 are only inde-
pendent if they are from distinct threads, they are commutative at states where
both R1 and R2 are enabled, and executing R1 does neither enable nor disable
R2. We write R1 ∦ R2 if R1 and R2 are not independent.

2.2 Requirements on incomplete verification results

Our goal is to ease the verification task by producing incomplete verification
results (IVRs) which prove the program safety under reduced non-determinism,
i.e., only for a certain scheduler. We only allow “legitimate” restrictions of the
scheduler that do not introduce deadlocks or exclude threads. Inputs must not be
restricted, since this might reduce functionality and result in unhandled inputs.

Hence, we define an IVR to be a function R that maps execution prefixes
to sets of threads, representing scheduling constraints. An IVR for the program
from Fig. 1, for instance, may output {T1} in states with an empty buffer, mean-
ing that only thread T1 may be scheduled here, and {T2} otherwise, so that an
item is produced if and only if the buffer is empty. A scheduler ζR enforces (the
scheduling constraints of) an IVR R if ζR(τ) ∈ R(τ) for all execution prefixes
τ . IVR R permits all executions possible under a scheduler that enforces R.

The remainder of this subsection discusses the requirements on useful IVRs.
We define safe, realizable, deadlock-free, fairness-admitting, and fair IVRs. In
the following subsection, we instantiate IVRs with abstract reachability trees
(ARTs).

Safety. An IVR R can either expose a bug in a program or guarantee that
all permitted executions are safe. Here, we are only concerned with the latter
case. An IVR R is safe if all executions permitted by R are safe. An unsafe IVR
permits an unsafe execution and is called a counterexample.

Completeness. To reduce the work for the model checker, a safe IVRR should
ideally have to prove the correctness of as few executions as possible. At the same
time, it should cover sufficiently many executions so that the program can be
used without functional restrictions. For instance, the IVR R(τ) := ∅, for all
τ , is safe but not useful, as it does not permit any execution. Consequently, R
should permit at least one enabled transition, in all non-deadlock states, which
is done by realizable IVRs: an IVR R is realizable if at least one scheduler that
enforces R exists. Furthermore, an IVR should never introduce a deadlock: an
IVR R is deadlock-free if all schedulers that enforce R are deadlock-free.

Fairness. In general, we deem only fair executions desirable. The IVRR(τ) :=
{T1}, for instance, is deadlock-free for the program of Fig. 1 but useless, as no
item is consumed. A deadlock-free IVR admits fairness if there exists a fair
scheduler enforcing R (i.e., a fair execution of the program is possible).



If a scheduler permits both fair and unfair executions, it might be difficult to
guarantee fairness at runtime. In such cases, a fair IVR can be used: A deadlock-
free IVR R is fair if all schedulers enforcing R are fair.

2.3 Abstract reachability trees as incomplete verification results

In this subsection, we instantiate the notion of IVRs using abstract reachability
trees (ARTs), which underly a range of software model checking tools [21,28,23,9]
and have recently been used for concurrent programs [39]. Due to the explicit
representation of scheduling choices from the beginning of an execution up to an
(abstract) state, ARTs are well-suited to represent IVRs. Model checking algo-
rithms based on ARTs perform a path-wise exploration of program executions
and represent the current state of the exploration using a tree in which each
node v corresponds to a set of states at a program location l(v). These states,
represented by a predicate φ(v), (safely) over-approximate the states reachable
via the program path from the root of the ART (ε) to v. Edges expanded at v
correspond to transitions starting at l(v). A node w may cover v (written v B w)
if the states at w include all states at v (φ(v) ⇒ φ(w)); in this cases, v is cov-
ered (covered(v)) and its successors need not be further explored. (Intuitively,
executions reaching v are continued from w.) Formally, an ART is defined as
follows:

Definition 3 (abstract reachability tree [28,39]). An abstract reachability
tree (ART) is a tuple A = (V, ε,−→,B), where (V,−→) is a finite tree with root
ε ∈ V and B⊆ V × V is a covering relation. Nodes v are labeled with global
control locations and state formulas, written l(v) and φ(v), respectively. Edges

(v, w) ∈−→ are labeled with a thread and a transition, written v
T,R−−→ w.

Intuitively, an ART A is well-labeled [28] if A ’s −→-edges represent the tran-
sitions of the program and edges v B w indicate that all states modeled by
node v are also modeled by node w. Formally, A is well-labeled if for every

edge v
T,Rl,l′−−−−→ w in A we have that (i) φ(ε) represents the initial state, (ii)

φ(v)(s) ∧Rl,l′(s, s
′)⇒ φ(w)(s′) and lT (v) = l and lT (w) = l′, and (iii) for every

v, w with v B w, φ(v)⇒ φ(w) and ¬covered(w).

mutex = 0 ∧ count = 0

mutex = 0 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 0

mutex = 1 ∧ count = 1

mutex = 0 ∧ count = 1

false

ε

v1

. . .. .
.

T1: produce()

T1: lock(mutex)

T1: if (count<N)

T1: put item

T1: count+=1

T1: unlock(mutex)

T1: else

T2: consume()T1: produce()

An incomplete ART Ap−c for the
producer-consumer problem of Fig. 1 is
shown on the right. Nodes show the
state formulas and edges are labeled
with the thread and statement corre-
sponding to the transition.

ART-induced schedulers. A well-
labeled ART A directly corresponds to
an IVR RA that simulates an execution
by traversing A . We define RA as fol-
lows: Let τ = s0, T1, s1, . . . , sn be an ex-
ecution prefix. If A contains no path that corresponds to τ , RA leaves the



schedules for this execution unconstrained. Otherwise, let vn be the last node of
the path in A that corresponds to τ . RA permits exactly those threads that are
expanded at vn (or at w if vn is covered by some node w). E.g., the execution
prefix τ = s0, T1, s1 corresponds to the path from ε to v1 in Ap−c. As only T1 is
expanded at v1, RA p−c allows only {T1} after τ .

Safety. An ART is safe if whenever lT (v) is the error location then φ(v) =
false. As only safe executions may correspond to a path in a safe ART (cf.
Theorem 3.3 of [39]), RA is a safe IVR.

Completeness. In order to derive a deadlock-free IVR from a well-labeled ART
A , we have to fully expand at least one thread T at each node v that represents
reachable states (where T is fully expanded at v if v has an outgoing edge for
every active transition of T at lT (v)). However, there may exist reachable states
s represented by φ(v) for which no action of T is enabled (i.e., enabledT (s) = ∅).
If T is the only thread expanded at v, RA is not realizable. This situation can
arise for locations l at which T may block (marked with may-block(lT )).

Consequently, whenever may-block(lT (v)) in a deadlock-free ART A , we re-
quire that φ(v) is strong enough to entail that the transitions R of T expanded at
v (or at the node covering v, respectively) are enabled (i.e., φ(v)⇒ Guard(R)).
For instance, φ(v1) in the ART shown above proves the enabledness of T1 at v1,
as φ(v1)⇒ mutex = 0 and lock(mutex) is enabled if mutex = 0.

Lemma 1. If an ART A is deadlock-free, RA is a deadlock-free IVR.

Fairness. IVRs derived from deadlock-free ARTs do not necessarily admit
fairness if the underlying ART contains cycles (across B and −→ edges) that
represent unfair executions. In order to make sure a deadlock-free ART admits
fairness we implement a scheduler that allows A to schedule each thread in-
finitely often (whenever it is enabled infinitely often) by requiring that every
(B ∪ −→)-cycle is “fair”, defined as follows.

Definition 4 (ART admitting fairness). A deadlock-free ART A = (V, ε,−→
,B) admits fairness if every (B ∪ −→)-cycle contains, for every thread T that is
enabled at a node of the cycle, a node v such that T is expanded at v.

Lemma 2. If an ART A admits fairness, RA is an IVR that admits fairness.

T1: lock()

T1: unlock()

T2: lock()

T2: unlock()

︸
︷︷

︸

p
ro
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u
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1
item
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n
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m
e
1
it
em

︷
︸︸

︷

Note that the expansion of a thread T at a node
in a cycle does not guarantee that the transition is
part of the cycle. A slight modification of the fair-
ness condition for ARTs leads to a sufficient condi-
tion for ARTs as fair IVRs, as the following defini-
tion and lemma show. The difference in the fairness
condition is that all enabled threads are expanded
within each (B ∪ −→)-cycle c, which we denote by
fair(c). The (B ∪ −→)-cycle shown on the right, for
instance, is fair.



Algorithm 1 Part 1: Iterative Impact for concurrent programs: main
procedure (based on [39])

input : Program with threads T
intermediate outputs: fair ARTs A1 ⊆ A2 ⊆ . . . ⊆ An and unsafe ARTs
output : safe, partially safe, or unsafe

Data: A = (V, ε,−→,B) := ({ε}, ε, ∅, ∅),
W := {ε}, I := {}

1 Function Main()
2 while true do
3 status := Iteration()
4 if status = no progress then
5 break
6 else if status = counterexample

then
7 yield A as an unsafe IVR
8 else
9 A ′ := Remove_Error_Paths(A )

10 yield A ′ as a safe IVR

11 if A is safe then
12 return safe
13 else if Remove_Error_Paths(A )

admits fairness then
14 return partially-safe
15 else
16 return unsafe

17 Function Iteration()
18 W := New_Schedule_Start()
19 if W = ∅ then
20 return no progress
21 while W 6= ∅ do
22 select and remove v from W
23 Close(v)
24 if v not covered then
25 status := Refine (v)
26 if status = counterexample then
27 return counterexample
28 status := Check_Enabledness(v)
29 if status = no progress then
30 return no progress
31 Expand (v)

32 return progress

Definition 5 (fair ART). A deadlock-free ART A = (V, ε,−→,B) is fair if
fair(c) holds for every (B ∪ −→)-cycle c.

Lemma 3 (fairness). For all fair ARTs A , RA is a fair IVR.

Given an ART A that admits fairness, one can generate a fair ART A ′ such
that RA permits all executions permitted by RA ′ .

3 Iterative model checking

A suitable algorithm for our framework must generate fair IVRs. We use model
checking based on ARTs (cf. Sec. 2.3), which allows us to check infinite execu-
tions and explicitly represent scheduling. Nevertheless, other program analysis
techniques such as symbolic execution are also suitable to generate IVRs. In par-
ticular, our algorithm (Alg. 1 parts 1 and 2) constitutes an iterative extension
of the Impact algorithm [28] for concurrent programs [39]. We chose Impact as
a base for our algorithm because it has an available implementation for multi-
threaded programs, which we use to evaluate our approach in Sec. 5.

Impact generates an ART by path-wise unwinding the transitions of a pro-
gram. Once an error location is reached at a node v, Impact checks whether
the path π from the ART’s root to v corresponds to a feasible execution. If
this is the case, a property violation is reported; otherwise, the node labeling is
strengthened via interpolation. Thereby, a well-labeled ART is maintained. Once
the ART is complete, its node labeling provides a safety proof for the program.

In each iteration, our extended algorithm yields an IVR which is either unsafe
(a counterexample) or fair (can be used as scheduling constraints). If the algo-
rithm terminates, it outputs “safe”, “partially safe”, or “unsafe”, depending on



Algorithm 1 Part 2: Iterative Impact for concurrent programs

continued:
1 Function Check_Enabledness(v)

2 π := v0
T1,R1−−−−→ v1 . . .

Tn,Rn−−−−−→ vn
path from ε to v

3 if not may-block(lvn−1)T n then
4 return progress
5 if R1 ∧ . . . ∧ Rn−1 ∧ ¬Guard(Rn) is

unsat then
6 φ(v) := φ(v) ∧Guard(Rn)
7 else
8 return Backtrack(v)

9 Function Close(v)
10 for all uncovered nodes w that have

been created before v do
11 if l(w) = l(v) ∧ (φ(v)⇒ φ(w))

∧∀c ∈ CA (v, w). fair(c) then
12 B:=B ∪{(v, w)}
13 B:=B \{(x, y) : v  y}
14 for T with v

T−→ v′

and not w
T−→ w′ do

15 add (v, T ) to I

16 Function Backtrack(v)

17 π := v0
T1,R1−−−−→ v1 . . .

Tn,Rn−−−−−→ vn
path from ε to v

18 i := n− 1
19 while i ≥ 0 do

20 if ∃T, v′i. vi
T−→ v′i /∈ A

∧(Skip(vi, T) = false) then

21 add vi
T−→ v′i to A

22 W := W ∪ {v′i}

23 prune
Ti+2,Ri+2−−−−−−−−→ vi+3 . . .

. . .
Tn,Rn−−−−−→ vn from A

24 φ(vi+1) := false
25 return progress

26 i := i− 1

27 return no progress

28

29 Function Expand(v)
30 T := Schedule_Thread (v)
31 Expand_Thread (T , v)

whether the program is safe under all, some, or no schedulers. Procedure Main()
repeatedly calls Iteration() (line 3), which, intuitively, corresponds to an execu-
tion of the original algorithm of [39] under a deterministic scheduler. Iteration()
(potentially) extends the ART A . If no progress is made (A is unchanged), the
algorithm terminates (lines 12, 14, and 16). Otherwise, an intermediate output
is yielded: either A as an intermediate output (line 7) or A with all previously
found counterexamples removed, i.e., the largest fair ART that is a subgraph of
A , denoted by Remove Error Paths().

Iteration() maintains a work list W of nodes v to be explored via Close(v)
(Alg. 1 part 2), which tries to find (as in [39]) a node that covers v. In addition to
the covering check of [39], we check fairness, where CA (v, w) denotes all cycles
that would be closed by adding the edge v B w (line 11 of Alg. 1 part 2). If such
a node w is found, any thread T that is expanded at v but not at w (line 14
of Alg. 1 part 2) must not be skipped at w by POR. Instead of expanding T
instantaneously at w (as in [39]), which would explore another schedule, T is
added to the set I so that it can be explored in a subsequent iteration. If no
covering node for v is found, v is refined, which returns counterexample if v has
a feasible error path (line 25). Otherwise (line 28), Check Enabledness() (Alg. 1
part 2) performs a deadlock check by testing whether the last action that leads
to v is enabled in all states represented by the predecessor node. If not, deadlock-
freedom is not guaranteed and Backtrack() tries to find a substitute node where
exploration can continue.

The deterministic scheduler of Iteration() is controlled by New Schedule -
Start() and Schedule Thread(). The former selects a set of initial nodes for the
exploration (line 18 of Alg. 1 part 1); the latter decides which thread to expand
at a given node (line 30 of Alg. 1 part 2). We use a simple heuristic that selects
the first (in breadth-first order) node which is not yet fully expanded and use



1 Variables:
2 int x, y
3 Thread T1:
4 while true:
5 x := 1
6 if y = 0:
7 y := 1
8 Thread T2:
9 while true:

10 x := 0

ε

v1

v2

v3

v4 v5

v6

T1: x:=1

T2: x:=0

T1: read y

T1: if y=0 T1: else

T1: y:=1

Fig. 2 (a) Section paths

ε

v3

σ1, true

σ2, y = 0

σ3, y 6= 0

Fig. 2 (b) A program schedule

a round-robin scheduler for Schedule Thread that switches to the next thread
once a back jump occurs (e.g., the end of a loop body is reached). Additionally,
Schedule Thread returns only threads that are necessary to expand at the given
node after POR (cf. Skip() [39]). More elaborate heuristics are conceivable but
out of the scope of this paper.

The correctness of Alg. 1 w.r.t. safety follows from the correctness of [28]
and [39]. Additionally, Alg. 1 is also fair:

Lemma 4 (fairness of Alg. 1). Any safe ART A generated by Alg. 1 is fair.

4 Partial-order reduction

A naive enforcement of the context switches at the relevant nodes of a safe IVR
RA would result in a strictly sequential execution of the transitions, foiling
any benefits of concurrency. To enable parallel executions, we introduce pro-
gram schedules that relax the scheduling constraints by means of partial-order
reduction (POR). Note that this application of POR concerns the enforcement
of scheduling constraints and occurs in addition to POR applied by our model
checking algorithm when constructing an ART (cf. Sec. 3). Nevertheless, depen-
dency information that is used for POR during model checking can be reused so
that redundant computations are avoided.

The goal is to permit the parallel execution of independent transitions (in
different threads) whose order does not affect the outcome of the execution
represented by A (i.e., the resulting traces are Mazurkiewicz-equivalent). Using
traditional POR to construct such scheduling constraints poses two challenges:
1. Executions may be infinite, but we need a finite representation of scheduling
constraints. 2. The control flow of an execution may be unpredictable, i.e., it
is a priori unclear which scheduling constraints will apply. We solve issue 1
by partitioning ARTs into sections and associate a finite schedule with every
section. To address issue 2, we require that sections do not contain branchings
(control flow and non-deterministic transitions).

Consider the program and corresponding ART in Fig. 2a. The if-statement
of T1 is modeled as a separate read transition followed by a branching at node
v3. We define three section paths π1 := ε −→ v1 −→ v2 −→ v3, π2 := v3 −→ v4 −→
v6 −→ ε, and π3 := v3 −→ v5 −→ ε. After π1 has been executed, a scheduler can
distinguish the cases y = 0 and y 6= 0 and schedule π2 or π3 accordingly.



Formally, a section path v1
R1−−→ . . .

Rn−−→ vn+1 corresponds to a branching-free
path in an ART whose first transition may be guarded. A section path follows
−→A edges, skipping covering edges B. The section schedule of a section path de-
scribes the Mazurkiewicz equivalence class of the contained transitions and is de-
fined as the smallest partial order σ = (Vσ,−→σ) such that Vσ = {e1, . . . , en} and
−→σ⊇ {(ei, ej) : i < j ∧Ri ∦ Rj}, where ei, 1 ≤ i ≤ n is the occurrence of transi-
tion Ri at position i. The section schedule of π1 is ({e1, e2, e3}, {(e1, e2), (e1, e3)})
with e1 , T1 : x:=1, e2 , T2 : x:=0, and e3 , T1 : read y.

A program schedule Σ comprises several section schedules. Σ is a labeled
graph (VΣ , −→Σ). Each node v ∈ VΣ is the start of a section path π in A . Each
edge is labeled with the section schedule of π and the guard Guard(R) of the
first transition R in π. As A is deadlock-free, there exists a thread T which is
fully expanded at v in A and we require that Σ likewise has outgoing edges at
v labeled with T for each transition of T at v. Fig. 2b shows a program schedule
for our example program.

A scheduler can enforce the scheduling constraints of a program schedule
by picking a section schedule that matches the current execution prefix and
scheduling an event whose predecessors (according to the section schedule) have
already been executed. Hence, all independent events in a section can be executed
concurrently without synchronization. All events of a section schedule have to
appear before the first event of the next section schedule, so that the states
reached between sections correspond to nodes of the program schedule.

A program schedule of an ART A that admits fairness permits exactly those
executions that correspond to a path in A (modulo Mazurkiewicz equivalence).
In particular, as Mazurkiewicz equivalence preserves safety properties [17], only
safe executions are permitted.

Lemma 5 (correctness). Let A be an ART that admits fairness and Σ a
program schedule for A . All program executions induced by Σ are equivalent to
an execution that corresponds to a path in A .

5 Evaluation

In five case studies, we evaluate our iterative model checking algorithm and
scheduling based on IVRs. We use the Impara model checker [39], as it is the only
available implementation of model checking for non-terminating, multi-threaded
programs based on a forward analysis on ARTs we have found. Impara uses
lazy abstraction with interpolants based on weakest preconditions. We extend
the tool by implementing our algorithm presented in Sec. 3. Impara accepts C
programs as inputs, however, some language features are not supported and we
have rewritten programs accordingly.3 We refer to the (non-iterative) Impara

3 E.g., Pthread mutexes, some uses of the address-of operator, and reuse of the same
function by several threads are not supported. We solve these issues by rewriting
our benchmark programs so that Impara handles them correctly and their intuitive
semantics is not changed. We will publish our modifications to Impara, including
two bug fixes.



tool as Impara-C (for complete verification) and to our extension of Impara
with iterative model checking as Impara-IMC.

Based on the ARTs constructed by Impara, program schedules are gener-
ated automatically and encoded as vector clocks. We instrument the benchmark
programs with a call-back to a specially designed user space scheduler directly
before and after each access to a global variable. The result is a multi-threaded
program that executes concurrent memory accesses according to a given program
schedule. All experiments have been executed on a 4-core Intel Core i5-6500 CPU
at 3.2 GHz. We report median values averaged over five runs.

5.1 Infeasible complete verification
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Even for a moderate number of threads, complete verifica-
tion, i.e., verification of a program under all possible sched-
ules and inputs, may be infeasible. In particular, Impara-C
times out (after 72 h) on a corrected variant of the producer
consumer problem (Fig. 1) with four producers and four con-
sumers. Impara-IMC produces the first IVR R1 after 4:29:53
hours. A simplification of R1 is depicted on the right; it covers
all executions in which the threads appear to execute their loop bodies atom-
ically in the order T1, T2, . . . , T8. While the main bottleneck for Impara-C is
state explosion and finding many coverings for different schedules, we observe
that the main issue to produce R1 is to find a single covering that comprises all
threads, i.e., to find a fair cycle.

The subsequent IVRsR2, . . . ,R8 are found much faster than the first IVR, af-
ter 19:31, 12:3, 6:13, 28:0, 9:25, 8:27, and 8:40 minutes. We stop the model checker
after eight IVRs. According to our implementation of New Schedule Start() in
Alg. 1, IVR Ri permits, in addition to all executions permitted by Ri−1, those
executions in which the threads appear in the order Ti, T1, . . . , Ti−1, Ti+1, . . . , T8.
Hence, R8 gives the scheduler more freedom than R1, which may result in a bet-
ter execution performance, e.g., because a producer which has its item available
earlier does not have to wait for all previous producers.

5.2 Deadlocks

1 Thread T1:
2 while true:
3 lock(mutex1)
4 lock(mutex2)
5 execute critical section()
6 unlock(mutex2)
7 unlock(mutex1)

8 Thread T2:
9 while true:

10 lock(mutex2)
11 lock(mutex1)
12 execute critical section()
13 unlock(mutex2)
14 unlock(mutex1)

A common issue with multi-
threaded programs are dead-
locks, which may occur
when multiple mutexes are
acquired in a wrong order,
as in the program on the
right, in which two threads use two mutexes to protect their critical sections. A
deadlock is reached, e.g., when T2 acquires mutex2 directly after T1 has acquired
mutex1. A monolithic verification approach would try to verify one or more execu-
tions and, as soon as a deadlock is found, report the execution that leads to the



deadlock as a counterexample. With manual intervention, this counterexample
can be inspected in order to identify and fix the bug.

In contrast, Impara-IMC logs both safe and unsafe IVRs. The first IVR
found in this example covers all executions in which Threads 1 and 2 execute
their loop bodies in turns, with Thread 1 beginning. As expected, executing the
program with enforcing the first program schedule never leads to a deadlock.
Executing the uninstrumented program (without scheduling constraints) leads
to a deadlock after only a few hundred loop iterations. Hence, IMC enables to
safely use the program deadlock-free and without manual intervention.

5.3 Race conditions through erroneous synchronization

1 Threads
2 T1: while true: produce()
3 T2: while true: produce()
4 T3: while true: consume()
5 T4: while true: consume()

6 produce:
7 if buffer is not full():
8 lock()
9 assert buffer is not full()

10 add item()
11 unlock()

12 consume:
13 if buffer is not empty():
14 lock()
15 assert buffer is not empty()
16 remove item()
17 unlock()

The above program shows a variant of the producer-consumer problem with
two producers and two consumers which uses erroneous synchronization: both
the produce and consume check the amount of free space without acquiring the mutex
first. For example, a buffer underflow occurs if the buffer contains only one item
and the two consumers concurrently find that the buffer is not empty; although
the buffer becomes empty after the first consumer has removed the last item,
the second consumer tries to remove another item.
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T1 produce

T2 produce
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T4 consume

The first IVR found by Impara-IMC is depicted sim-
plified on the right. The simplification merges all indi-
vidual edges of a procedure into a single edge, which is
possible as Impara-IMC does not apply context switches
inside of procedures during the first iteration. Since both
procedures appear to be executed atomically, no asser-
tion violation is found during the first iteration. We ran the program with a
program schedule corresponding to the first IVR. As expected, we have not ob-
served any assertion violations.

5.4 Declarative synchronization

Fig. 3 shows an extension of a benchmark used in [15], which is a simplified
extract of the multi-threaded Frangipani file system. The program uses a time-
varying mutex: depending on the current value of the busy bit, a disk block is
protected by m busy or m inode. We want to evaluate whether we can use Impara-
IMC to generate safe program schedules even if all mutexes are (intentionally)
removed from the program.

For this purpose, we use a variant of the file system benchmark where all
mutexes are removed and synchronization constraints are declared as assume
statements, shown in Fig. 4. It is sufficient to assure for T1 that the block is
written only if it is allocated, i.e., both inode and busy are true. For T2, it is



1 Variables:
2 int block
3 boolean busy
4 boolean inode
5 mutex m inode
6 mutex m busy
7 Initially: inode = busy

8 Thread T1:
9 while true:

10 lock(m inode)
11 if not inode:
12 lock(m busy)
13 busy := true
14 unlock(m busy)
15 inode := true
16 block := 1
17 unlock(m inode)

18 Thread T2:
19 while true:
20 lock(m busy)
21 if not busy:
22 block := 0
23 unlock (m busy)

24 Thread T3:
25 while true:
26 lock(m inode)
27 lock(m busy)
28 inode := false
29 busy := false
30 unlock(m inode)
31 unlock(m busy)

Fig. 3: The file system benchmark

1 Thread T1:
2 while true:
3 if not inode:
4 busy := true
5 inode := true
6 atomic−begin
7 assume inode and busy
8 block := 1
9 atomic−end

10 Thread T2:
11 while true:
12 if not busy:
13 atomic−begin
14 assume not busy
15 block := 0
16 atomic−end

17 Thread T3:
18 while true:
19 atomic−begin
20 assume inode = busy
21 inode := false
22 busy := false
23 atomic−end

Fig. 4: The file system benchmark with synchronization constraints in assume
statements

sufficient to assure that the block is only reset if it is not busy, i.e., busy = false.
Finally, for T3, it is necessary to assure that the block is deallocated only if it is
already deallocated or fully allocated, i.e., inode = busy.

1 Thread T ′2:
2 while true:
3 atomic−begin
4 assume not busy
5 block := 0
6 atomic−end

Running Impara-IMC on the file system benchmark
without mutexes yields a first program schedule that sched-
ules T1, T2, T3 repeatedly in this order, according to our
simple heuristic for an initial IVR. However, although
all executions permitted by this schedule are fair, the if-
condition of T2 always evaluates to false and T2 never per-
forms useful work. To obtain a more useful schedule, we inform the model checker
that the (omitted) else-branch of Thread T2 is not useful. We encode this infor-
mation by inserting else: assume false. After simplifying the code, we obtain T ′2 as
depicted on the right. For the updated code, Impara-IMC yields a first scheduler
that schedules T3 before T2 before T1, so that all threads perform useful work.

5.5 Performance

Tab. 1 shows the performance impact of enforcing IVRs on several correct
programs. Each program is model-checked once until the first IVR (Impara-
IMC) and once completely (Impara-C). As a baseline, the program is run with-
out schedule enforcement (unconstrained). The first IVR is enforced without
(Opt0), and with optimizations (Opt1, Opt2). Opt1 applies POR and omits
operations on synchronization objects (mutexes, barriers).4 Opt2 uses, in addi-
tion to Opt1, longer section schedules (by replicating a section eight times) and

4 As enforcing an IVR is redundant to synchronization over existing mutexes and
barriers, omitting them is safe.



Table 1: Experimental results (to: timeout, rounded to full seconds)
Performance is measured in number of useful (e.g., with a successful concurrent
access such as a produced item) loop iterations within a time limit of 2 seconds.

Model checking Performance (higher is better)
Benchmark Time 1st IVR Impara-C Opt0 Opt1 Opt2 Unconstr.

prod.-cons. 1p 1c 2m 0s to (72h) 4864489 7466093 11370258 8199202
prod.-cons. 2p 2c 23m 47s to (72h) 3400187 5959041 8428598 11643208
prod.-cons. 4p 4c 4h 29m 53s to (72h) 1327063 2576695 3676876 7210796
double lock 1 ms 0s 0s 1845 1834 3217 1797
file system 0s 0s 3667 4877035 6705672 23822129
barrier 1s 4m 14s 1238720 8285228 14586849 1077907

stronger partial-order reduction that identifies independent accesses to distinct
indices of an array. Additionally, for the producer-consumer benchmark, we ap-
ply a compiler-like optimization, removing and reordering events to reduce the
number of constraints.5 Both Opt1 and Opt2 enable the concurrent execution
of more memory accesses, e.g., because the beginning of a critical section can
already be executed before a thread arrives at a constrained access that has to
wait. The schedules for each benchmark (Opt0–Opt2) are obtained from the first
IVR. As all benchmarks use unbounded loops, we measure the execution time
performance by counting useful (i.e., with a successful concurrent access such as
a produced item) loop iterations and terminating the execution after 2 seconds.

We use the producer-consumer implementation (with correct synchroniza-
tion and buffer size 1000) from SV-COMP [1] (stack safe), modified with an
unbounded loop and with 1, 2, and 4 producers and consumers. The double lock
benchmark is a corrected version (lock operations in T2 reversed) of the deadlock
benchmark (Sec. 5.2), where the critical section is simulated by sleeping for 1
ms; the uncorrected version reached a deadlock after only 172 loop iterations.
The file system benchmark from SV-COMP (time var mutex safe) is extended
with a third thread and again with unbounded loops as in Sec. 5.4. The barrier
benchmark uses two barriers to implement ring communication between threads.

As the model checking columns of Tab. 1 show, Impara-IMC finds the first
IVR often much faster than or at least as fast as it takes Impara-C for com-
plete model checking; it can produce an IVR even for our largest benchmarks,
where Impara-C times out. For a buffer size of 5, Impara-C can verify the
producer-consumer benchmark even with eight threads but again, Impara-IMC
is considerably faster in finding the first IVR. Subsequent IVRs were generated
considerably faster than the first IVR, which might be caused by caching of facts
in the model checker.

Somewhat surprisingly, some benchmarks are slower when executed uncon-
strained. We conjecture that this is caused by more memory accesses being
executed in parallel under Opt2. In all but one cases, Opt2 is considerably faster

5 Opt2 follows a general algorithm, however we do not automate our implementation
of Opt2, as it would be a large effort to implement compiler optimizations. Our
implementation of Opt1 is automated.



than Opt1, which is considerably faster than Opt0. The highest overhead is
observed for the file system benchmark, where Opt2 is about 3.5 times slower
than the unconstrained execution. We conjecture that the high overhead here
stems from an unequal distribution of loop iterations among threads, when ex-
ecuted unconstrained: the loop body of T2 was executed nearly 100 times more
frequently than T1, while it is shorter and probably faster. Opt0–Opt2 execute
all threads nearly balanced. In addition to the Pthread barriers used in the
barrier benchmark, we tried a variant with busy waiting barriers, where the un-
constrained execution showed a performance of 13 567 135, which is still slower
than Opt2. When the buffer size of the producer-consumer benchmark with eight
threads is reduced to 5, the performance of unconstrained executions decreases
to 3 240 136 compared to 3 392 111 with Opt2.

Even in repeated executions of the experiment, the unconstrained variant
of double lock showed only “starving” executions in the sense that the second
thread was never able to acquire the mutexes before the timeout of 2 seconds.
Hence, the constrained executions improve on the operating system scheduler in
terms of a balanced execution of all threads.

In order to compare to the enforcement of input-covering schedules [7] (ex-
plained in Section 6), we measure the overhead of our scheduler implementation
on the pfscan benchmark used there. Pfscan is a parallel implementation of grep
and uses 1 producer and 2 consumer threads to distribute tasks, consisting of
reading and searching a file for a given query. As input, we use 8 files with
100MB of random content each. We evaluate 4 different schedules6, which show
an overhead between 3% and 10% (with Opt2). Hence, IVRs can perform much
better than input-covering schedules (60% overhead reported in [7]).

6 Related work

Unbounded model checking [20,39,32,18] is a technique to verify the correctness
of potentially non-terminating programs. In our setting, we deploy algorithms
that use abstract reachability trees (ARTs) [21,28,39] to represent the already
explored state space and schedules, and perform this exploration in a forward
manner. Instead of discarding an ART after an unsuccessful attempt to verify a
program, we use the ART to extract safe schedules.

Conditional model checking [8] reuses arbitrary intermediate verification re-
sults. In contrast to our approach, they are not guaranteed to prove the safety
of a program that is functional under all inputs and does not enforce the pre-
conditions (e.g., scheduling constraints) of the intermediate result.

Context bounding [36,35,31] eases the model checking problem by bounding
the number of context switches. It is limited to finite executions and unlike our
approach, does not enforce schedules at runtime.

Automated fence insertion [13,24,2,3,26] transforms a program that is safe
under sequential consistency to a program that is also safe under weaker mem-

6 As Impara cannot handle several features used by pfscan (such as condition vari-
ables, structs, and standard output), we manually generate initial IVRs.



ory models. While the amount of non-determinism in the ordering of events is
reduced, non-determinism due to scheduling can not be influenced. Synchroniza-
tion synthesis [19] inserts synchronization primitives in order to prevent incorrect
executions, but may introduce deadlocks.

Deterministic multi-threading (DMT) [4,6,7,12,11,27,30,34] reduces non-de-
terminism due to scheduling in multi-threaded programs. Schedules are chosen
dynamically, depending on the explicit input, and can not be enforced by a
model checker. Nevertheless, there are combinations with model checking [11]
and instances which schedule based on previously recorded executions [12].

We are aware of only one DMT approach that supports symbolic inputs [7].
Similar to our sections, bounded epochs describe infinite schedules as permuta-
tions of finite schedules. Via symbolic execution, an input-covering set of sched-
ules is generated, which contains a schedule for each permutation of bounded
epochs. As all permutations need to be analyzed (even if they are infeasible),
state space explosion through concurrency is only partially avoided; indeed, the
experimental evaluation shows that the analysis is infeasible even for five threads
when the program has many such permutations. In contrast, we do not require
race-freedom, use model checking, sections may contain multiple threads, omit
infeasible schedules, and allow a safe execution from the first schedule on, i.e.,
an IVR can be considerably smaller than an input-covering set of schedules.

Deterministic concurrency requires a program to be deterministic regardless
of scheduling. In [37], a deterministic variant of a concurrent program is syn-
thesized based on constraints on conflicts learned by abstract interpretation.
In contrast to DMT, symbolic inputs are supported, however no verification
of general safety properties is done and the degree of non-determinism is not
adjustable, in contrast to IVRs.

Sequentialized programs [36,25,14,22,32,33] emulate the semantics of a multi-
threaded program, allowing tools for sequential programs to be used. The amount
of possible schedules is either not reduced at all or similar to context bounding.

7 Conclusion

We present a formal framework for using IVRs to extract safe schedules. We state
why it is legitimate to constrain scheduling (in contrast to inputs) and formulate
general requirements on model checkers in our framework. We instantiate our
framework with the Impact model checking algorithm and find in our evaluation
that it can be used to 1. model check programs that are intractable for mono-
lithic model checkers, 2. safely execute a program, given an IVR, even if there
exist unsafe executions, 3. synthesize synchronization via assume statements, and
4. guarantee fair executions. A drawback of enforcing IVRs is a potential execu-
tion time overhead, however, in several cases, constrained executions turned out
to be even faster than unconstrained executions.
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