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Abstract. The already challenging task of identifying the cause of a bug
becomes even more cumbersome if those bugs disappear or change their
behavior under observation. Such bugs occur in a range of contexts in-
cluding elusive concurrency bugs as well as unintended system alterations
during debugging and—as a pun on the name of Werner Heisenberg—
are often referred to as Heisenbugs. Heisenbugs can be caused by various
sources of nondeterminism on different system levels, many of which de-
velopers and testers might not even be aware of. This paper provides
formal foundations for rigorously reasoning about causes of Heisenbugs.
It provides a formal definition of Heisenbugs in terms of a hyperproperty
and introduces a framework for determining the causality of Heisenbugs
in presence of multiple candidate causes based on said hyperproperty.
We analyze the properties of causes and the implications on practical
causal analyses.

1 Introduction

Bugs which change their behavior under observation are notoriously difficult
to detect and fix. Inspired by Heisenberg’s uncertainty principle such bugs are
often referred to as Heisenbugs. Depending on the context, the term Heisenbug
has been used to describe slightly different concepts. In the software engineering
community, the term is used mostly for bugs whose analysis is hampered by
the probe effect, i.e., an unintended alteration of the system behavior during
debugging [18]. In the formal methods community, the term has been used to
refer to elusive faults arising from executions that exhibit nondeterminism, in
particular in the context of concurrent software [30]. In the context of automated
testing, the term flaky test is used for inconsistently failing test cases [31], i.e.
manifestations of Heisenbugs. As will become apparent in this paper, all the
mentioned phenomena can be formalized in a uniform manner. In the rest of the
paper, we hence use the term Heisenbug to refer to all the mentioned categories1.

A Formalization of Heisenbugs. The first contribution of this paper is a formal
definition of Heisenbugs. The unifying characteristic of Heisenbugs in the above-
mentioned categories is the existence of at least two system executions where one
1 In the literature, sometimes the term Mandelbug is used as an umbrella term for
the mentioned categories. However, Mandelbugs additionally include complex faults
where there is “a delay between the fault activation and the final failure occurrence”.
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execution is correct and the other exhibits a bug. In terms of testing, the same
test case sometimes succeeds and sometimes fails. We formalize this definition
in terms of a hyperproperty [7], which checks for the existence of two terminat-
ing executions with equal inputs but deviating outcomes for a final assertion
that is part of the system specification. Our definition accommodates deviations
caused by nondeterminism in a single program, e.g. due to concurrency, as well
as deviating behavior of different versions of the program, e.g. due to changes
for debugging.

Debugging Challenges. Previous studies have shown that Heisenbugs are preva-
lent even in mature software systems and that the bug fixing process takes signif-
icantly longer than for ordinary bugs [9]. Furthermore, Heisenbugs significantly
complicate automated testing techniques, as they lead to flaky tests [31].

A major step in the debugging process is the identification of the bug’s root
causes [35]. Developers reported this step to be particularly difficult for Heisen-
bugs [11] (referred to as flaky tests in this study). One reason for the complexity
is that Heisenbugs can be caused by mechanisms (i.e., sources of nondeterminism
or system alterations) located on all system levels ranging from the hardware
level to the user program. The following examples illustrate some possible causes:

Example 1 (Concurrency). We first present an example for a Heisenbug stem-
ming from system internal nondeterminism. The Therac-25 incident [24,37],
which resulted in the death of several cancer patients, is a notorious instance of
an atomicity violation [27]. Listing 1.1 illustrates the problem, which is caused
by the concurrent execution of two routines: the userInterface routine al-
lows the operator to choose between high energy x-ray therapy (isXray) and
a lower energy electron beam therapy (!isXray) and to set the intensity of
the radiation (isHigh). The assume statement in line 6 prevents a selection of
high-intensity electron therapy. The setup routine then processes these inputs: a
failed assertion represents the case where the patient is exposed to excessive radi-
ation. Assume that the user changes the initial configuration from high-intensity
x-ray treatment (isXray=true, isHigh=true) to low-energy electron therapy
(isXray=false, isHigh=false) in lines 4 and 7. If a context switch occurs right
after executing line 5, the assertion in line 13 will fail. When userInterface is
executed atomically, however, the assertion always holds.

1 bool isXray = true;
2 bool isHigh = true;
3 void *userInterface(void *a) {
4 isXray = read();
5 bool isHighTmp = read();
6 assume(isXray || !isHighTmp);
7 isHigh = isHighTmp;
8 }

9 void *setup(void *a) {
10 bool filter = isXray;
11 bool highEnergy = isHigh;
12 }
13 assert(filter || !highEnergy);

Listing 1.1: Illustration of Therac-
25 atomicity violation

To sum up, there is a Heisenbug caused by different possible schedules, which is
an example for the category of Heisenbugs arising from nondeterministic systems.
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Even if the scheduler might in fact be deterministic, its internal steps are not
observable for the programmer (which we model using nondeterminism).

Example 2 (Floating Point Precision). A prominent example for unintented sys-
tem alterations are debugging statements that inadvertently change program
outcomes. Consider Listing 1.2 (following [28]), which computes the square of
10308 and is expected to cause an overflow given the double-precision floating-
point representation. When compiled with optimization level -O3 and executed

using x87 instructions, however, the computation
results in 10308 rather than in an overflow, and
the assertion fails. The reason is that the com-
putation uses 80-bit floating point registers and
performs rounding only once values are stored in
64-bit memory cells. Adding the printf statement
in line 4 enforces such a write to memory, thus
yielding the expected overflow, and the assertion
holds.

1 double v = 1E308;
2 double y = 0;
3 y = v * v;
4 // printf("%g\n", y);
5 assert(isinf(y / v));

Listing 1.2: Floating-
point computation over-
flows in case of printf-
debugging

The failing and correct executions actually stem from two different system ver-
sions. In the considered execution model, the debugging statement changes the
semantics of the program, introducing a probe effect which causes the Heisenbug.

Multiple Causes. While the mechanisms causing the Heisenbugs in Example 1
and Example 2 can still be easily identified, such an analysis becomes more
challenging for more complex systems where several such mechanisms interact
in a non-trivial manner [33] (as in Example 3 below).

Example 3 (Weak Memory Models). Listing 1.3 shows Peterson’s mutual exclu-
sion algorithm for two processes. Computer architectures with weak memory
models relax the guarantees on the order in which variable assignments are ob-
served across processor cores, causing the algorithm to fail. In particular, the
synchronization fails if both processes set their flags in lines 5 and 15 but do not
commit the modifications from cache to shared memory before lines 8 and 18 are
executed, thus resulting in a Heisenbug (see [34]). Such a reordering, however, is
effectively prevented if there are printf statements in lines 7 and 17 (as might
be the case during development) and hence the bug only occurs once the printf
statements are removed. Yet, the printf statements are not causally related to
the Heisenbug (unlike in Example 2), as we will formally argue in Section 3.

Formal Causality Framework. In order to rigorously determine which mecha-
nisms cause a Heisenbug in settings with multiple candidate causes, we present
a formal causality defintion based on Lewis’ counterfactuals [26] and the causal-
ity framework of Galles and Pearl [14]. In counterfactual reasoning, an event is
a cause of an effect, if in an alternative world where the cause does not occur,
the effect does also not occur. In a nutshell, in a setting with multiple candidate
mechanisms, a subset of the mechanisms is a cause of a Heisenbug if there are
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1 int flagP0 = 0, flagP1 = 0;
2 int turn = 0;
3 int critical = 0, error = 0;
4 void *petersonP0(void *a) {
5 flagP0 = 1;
6 turn = 1;
7 //printf("barrier");
8 while (flagP1 && (turn == 1));
9 critical++;

10 if (critical != 1) error++;
11 critical--;
12 flagP0 = 0;
13 }

14 void *petersonP1(void *a) {
15 flagP1 = 1;
16 turn = 0;
17 //printf("barrier");
18 while (flagP0 && (turn == 0));
19 critical++;
20 if (critical != 1) error++;
21 critical--;
22 flagP1 = 0;
23 }
24 assert(error == 0);

Listing 1.3: Peterson’s algorithm
occasionally fails on weak memory
models

correct as well as failing executions which agree on the behavior of all other
given mechanisms. This is formalized by means of a hyperproperty resembling
our formal definition of Heisenbugs.

Note that our formal definition of causes refers to alternative scenarios for
counterfactual reasoning. This requires the sources of nondeterminism to be
made explicit in the underlying model (or controllable in the system under test,
respectively). In practice, however, identifying and controlling all possible sources
of nondeterminism is hardly feasible. Therefore, we prove that our causal analy-
sis yields sound results even if some sources of nondeterminism remain unknown
or uncontrollable: the result of evaluating our causality hyperproperty in a non-
deterministic system is always a subset of a cause identified in the corresponding
determinized system in which all sources are made explicit and controllable.

Based on these results, we present an iterative refinement methodology for
causal analysis and discuss practical challenges. We showcase how the method-
ology can be applied for analyses based on model checking and testing.

Main Contributions. The paper presents:
– A formal definition of Heisenbugs in reactive systems in terms of a hyper-

property, in presence of system-internal nondeterminism and/or unintended
system alternations (Section 2).

– A hyperproperty-based approach for defining the causality of Heisenbugs in
the presence of several potential causes and nondeterminism (Section 3).

– A methodology for causal analysis based on iterative refinement (Section 4).

2 A Formalization of Heisenbugs

This section provides our system model and a formal definition of Heisenbugs.
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2.1 System Model

In the following, the term formula refers to a first-order formula with a back-
ground theory that fixes the interpretations of predicates and function symbols.

Definition 1. A Symbolic Transition System (STS) is a tuple (X, I, init, final, T ),
where X and I are disjoint sets of system and input variables, respectively, the
initial condition init is a formula over X∪I, the final condition final is a formula
over X, and the transition relation T is a formula over X ∪ I ∪X ′, where the
variables X ′ denote primed copies of the variables X.

Let Val be a domain of values. Following [38], we assume Val to contain
a special value τ that represents quiescence, i.e., the absence of an input. A
configuration c of an STS is a mapping of the variables in (X ∪ I) to values in
Val. A state s is a mapping of the variables in X to values in Val. An input i
is a mapping of the variables in I to values in Val. The state c|X resp. input c|I
of a configuration c is the restriction of the mapping to variables in X resp. I.
We write c(v) for the value of a variable v ∈ (X ∪ I) in configuration c (and we
use the same notation for states and inputs).

For a formula ϕ and a mapping m of variables to values we write m |=
ϕ if ϕ evaluates to true under m. A configuration c is initial if c |= init. A
state s is final if s |= final. A configuration c is final if c|X is final. A state
s : X → Val is successor state of configuration c if 〈c, s′〉 |= T , where s′ :
X ′ → Val is the function that maps each primed variable x′ ∈ X ′ to s(x) and
〈·, ·〉 denotes the union of two mappings with disjoint domains. We call ci+1 a
successor configuration of ci if ci+1|X is a successor state of ci. We require that
final configurations do not have successor configurations.

A (finite or infinite) trace of an STS is a sequence of configurations c0, . . . , cn
where c0 |= init, and ci+1 is a successor of ci for all i ≥ 0. An execution of an
STS is a finite trace c0, . . . , cn such that cn is a final configuration.

It is straightforward to represent programs such as the examples from the
introduction as symbolic transition systems:

Example 4. Listing 1.1 can be modeled as an STS with I = {input1, input2} and
X = {isXray, isHigh, isHighTmp, filter, highEnergy, pc0, pc1}, where the variables
pc0 and pc1 model the program counters of the two threads. The initial condition
is (isXray ∧ isHigh ∧ pc0 = 4 ∧ pc1 = 10). The final condition is (pc0 = 8 ∧ pc1 =
12) and describes that both traces have reached their final program location.
The transition relation T shown in Figure 1 is a disjunctive partitioning that
represents a case split over all possible combinations of program locations, where
the thread to be executed in each step is chosen nondeterministically.

While Example 4 illustrates the case of nondeterminism in a single system
version, we next exemplify how to model system alterations in our formal model:
the original and the altered system can be combined in one STS with an initial
nondeterministic choice between two disjuncts of the transition relation.
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control flow︷ ︸︸ ︷ data flow︷ ︸︸ ︷
(pc0 = 4 ∧ pc′0 = 5) ∧ (pc′1 = pc1) ∧ (

∧
var∈X\{isXray,pc0,pc1} var′ = var) ∧ (isXray′ = input1)

∨ (pc0 = 5 ∧ pc′0 = 7) ∧ (pc′1 = pc1) ∧ (
∧

var∈X\{isHighTmp,pc0,pc1} var′ = var)∧
(isHighTmp′ = input2) ∧ (isXray′ ∨ ¬isHighTmp′)

∨ (pc0 = 7 ∧ pc′0 = 8) ∧ (pc′1 = pc1) ∧ (
∧

var∈X\{isHigh,pc0,pc1} var′ = var) ∧ (isHigh′ = isHighTmp)

∨ (pc1 = 10 ∧ pc′1 = 11) ∧ (pc′0 = pc0) ∧ (
∧

var∈X\{filter,pc0,pc1} var′ = var) ∧ (filter′ = isXray)

∨ (pc1 = 11 ∧ pc′1 = 12) ∧ (pc′0 = pc0) ∧ (
∧

var∈X\{highEnergy,pc0,pc1} var′ = var)∧
(highEnergy′ = isHigh)

Fig. 1: Transition relation for Listing 1.1

Example 5. The floating point program from Listing 1.2 can be modeled as an
STS where X = {v, y, pc, print}, I = ∅, the initial condition is (pc = 3 ∧ v =
10308∧y = 0), the final condition is pc = 5, and the transition relation is defined
as (pc = 3 ∧ pc′ = 5 ∧ y′ = v ∗ v ∧ v′ = v ∧ ¬print ∧ print′ = print) ∨ (pc =
3 ∧ pc′ = 5 ∧ y′ = convert64(v ∗ v) ∧ v′ = v ∧ print ∧ print′ = print) where
convert64 is a function producing the 64 bit representation of the number. The
initial condition does not constrain print, i.e., the initial value of print can be
arbitrary; this initial (nondeterministic) choice then fixes the respective disjunct
of the transition relation depending on whether the printf-statement is present
or not.

In the following, we formally define a number of useful properties of STSs.

Definition 2 (Termination). An STS is terminating if the STS does not have
infinite traces.

Definition 3 (Input Determinism). An STS is input-deterministic if 1) for
every input i there is at most one state s such that 〈s, i〉 |= init, and 2) for every
state s and every input i there is at most one successor state. Otherwise, it is
nondeterministic.

Definition 4 (Input-enabled). An STS is input-enabled if 1) for every input
i there is at least one state s such that 〈s, i〉 |= init, and 2) every configuration
that is not final has at least one successor. In case 2) is violated, we call the
transition relation partial.

We next define assertions as well as succeeding and failing executions:

Definition 5 (Assertions, Succeeding and Failing Executions). An as-
sertion is a formula ϕ over the system variables X. An execution π def

= c0, . . . , cn
succeeds with respect to ϕ if cn|X |= ϕ. Similarly, π fails if cn|X |= ¬ϕ. Abusing
our notation, we write π |= ϕ if π succeeds and π 6|= ϕ if π fails.

We note that without input-enabledness, which we do not require in general,
traces can get stuck at non-final configurations: For example, in Figure 1, any
state with pc0 = 5, pc1 = 12, isXray = false, input2 = true does not have a
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Fig. 2: Execution π1 of Figure 1
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Fig. 3: Execution π2 of Figure 1

successor. For such traces, it is not meaningful to argue whether they satisfy an
assertion. This is why Definition 5 quantifies over executions, i.e., traces that end
in a final configuration. Moreover, Definition 5 disregards infinite traces, as we
limit ourselves in this paper to Heisenbugs that are observable in a finite amount
of time; we leave the extension to non-terminating traces to future work.

Example 6. Figures 2 and 3 show executions of the STS from Example 4. For
ϕ

def
= (filter∨¬highEnergy) (the assertion in line 13), we have π1 |= ϕ and π2 6|= ϕ.

We presume that a system contains a bug if it has at least one failing execu-
tion (i.e., we assume that the assertion ϕ correctly encodes desired behavior of
the program):

Definition 6. Let (X, I, init, final, T ) be an STS and the assertion ϕ be a for-
mula over X. The STS contains a bug with respect to ϕ if there exists a failing
counterexample execution:

∃πc . πc 6|= ϕ.

A violation of the property ϕ in Definition 6, however, does not necessarily
constitute a Heisenbug.

2.2 Formal Definition of Heisenbugs

Heisenbugs are special bugs which occur only on some, but not on all executions.
We express this in terms of a hyperproperty [7]. Unlike properties over single
executions (such as Definition 6), hyperproperties relate sets of traces, allowing
us to characterize Heisenbugs by juxtaposing the behavior of two executions. In
particular, we require at least one succeeding and one failing execution induced
by the same input (as deviating behavior is to be expected for differing inputs).
To express this requirement for reactive systems, we define the projection of a
trace to its corresponding sequence of inputs that are not quiescent (i.e., not τ):
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Definition 7. Let π be a trace of the STS (X, I, init, final, T ), and let J ⊆ I be
some subset of the input variables. The input sequence J(π) is defined induc-
tively:

J(ε) = ε, J(c · π) =
{
J(π), if ∀i ∈ J : c(i) = τ
c|J · J(π) otherwise

where ε is the trace of length zero and · represents concatenation.

Example 7. The traces from Figures 2 and 3 have the same inputs 〈input1 7→
false, input2 7→ τ〉 · 〈input1 7→ τ, input2 7→ false〉 for J = I = {input1, input2}.

Heisenbugs can be characterized using a hyperproperty asserting the exis-
tence of two executions with matching inputs, one of which violates the assertion
while the other fulfills it:

Definition 8. An STS (X, I, init, final, T ) contains a Heisenbug with respect to
an assertion ϕ if

∃πc, πw . I(πc) = I(πw) ∧ πc 6|= ϕ ∧ πw |= ϕ.

The execution πc is the counterexample execution, πw is the witness execution.

We emphasize that the definition is expressed in terms of a hyperproperty
stating that the inputs of the two traces must match. This condition cannot be
expressed as a simple trace property. Moreover, we remark that Definition 8 is
amenable to hyperproperty model checking (e.g., [13]).

Example 8. The Therac-25 example contains a Heisenbug with counterexample
execution π2 from Figure 3 and witness execution π1 from Figure 2.

3 Causality

In this section, we extend the hyperproperty from Definition 8 to counterfactually
reason about the causality of Heisenbugs. We first present a refinement step
for making potential causes explicit in the model and then introduce formal
definitions of causality in deterministic as well as nondeterministic systems.

3.1 Modeling Sources of Nondeterminism

For the purpose of causality analysis, the sources of nondeterminism (which we
call mechanisms) need to be made explicit. Nondeterminism can be due to in-
complete observability, incomplete modeling or to inherent stochasticity in the
modeled system, as is the case for example in quantum mechanics [15, Section
3.1]. Nondeterminism stemming from incomplete observability and modeling can
be eliminated by refining the model with the relevant information. Even true non-
determinism can—at least in principle—be accounted for by means of prophecy
variables [1].

To formalize this idea, we introduce refinements of a transition system:
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schedule︷ ︸︸ ︷ control flow︷ ︸︸ ︷ data flow︷ ︸︸ ︷
¬thread ∧(pc0 = 4 ∧ pc′0 = 5) ∧ (pc′1 = pc1) ∧ . . .

∨ ¬thread ∧(pc0 = 5 ∧ pc′0 = 7) ∧ (pc′1 = pc1) ∧ . . .
∨ ¬thread ∧(pc0 = 7 ∧ pc′0 = 8) ∧ (pc′1 = pc1) ∧ . . .
∨ thread ∧(pc1 = 10 ∧ pc′1 = 11) ∧ (pc′0 = pc0) ∧ . . .
∨ thread ∧(pc1 = 11 ∧ pc′1 = 12) ∧ (pc′0 = pc0) ∧ . . .

Fig. 4: Deterministic transition relation for Listing 1.1

Definition 9 (Refinement). Let S def
= (X, I, init, final, T ) be an STS. We say

an STS Sref = (X ]Xref , I ] Iref , initref , finalref , Tref) is a refinement of S iff
1. for every 〈〈s, sref〉, 〈i, iref〉, 〈s′, s′ref〉〉 |= Tref we have that 〈s, i, s′〉 |= T , and

for every state 〈s, sref〉 of Sref and transition 〈s, i, s′〉 |= T there are mappings
iref , s

′
ref of Iref and X ′ref to values such that 〈〈s, sref〉, 〈i, iref〉, 〈s′, s′ref〉〉 |= Tref ,

2. for every 〈〈s, sref〉, 〈i, iref〉〉 |= initref we have 〈s, i〉 |= init, and for every
〈s, i〉 |= init there are mappings iref , sref of Iref and Xref to values such that
〈〈s, sref〉, 〈i, iref〉〉 |= initref , and

3. for every 〈s, sref〉 |= finalref we have s |= final, and for every s |= final and
every mapping sref of the variables Xref to values we have 〈s, sref〉 |= finalref .

We note that the above definition preserves executions: Let Sref be a refine-
ment of some STS S. Then every execution of Sref gives rise to an execution of S
by projecting away the additional state and input variables. On the other hand,
the conditions in the refinement definition ensure that every execution of S can
be extended to an execution of Sref by choosing suitable values for the additional
state and input variables. We note that refinements can be thought of as adding
additional information to the STS under analysis, and the requirements in our
definition ensure that executions are preserved. If all mechanisms (i.e., sources
of nondeterminism) are explicit, refinement yields a deterministic system:

Definition 10 (Determinization). We say that an STS Sdet is a determiniza-
tion of some STS S, if Sdet is a refinement of S and is input-deterministic.

Example 9. The Therac-25 transition system from Example 4 can be refined by
setting Iref = {thread}, where thread is a Boolean variable selecting which thread
takes a step. The refined transition relation is shown in Figure 4.

Example 10. The floating point transition system from Example 5 can be ex-
tended to a deterministic system by setting Iref = {debug} and considering the
refined initial condition (pc = 3 ∧ v = 10308 ∧ y = 0 ∧ (debug ⇔ print)), and
leaving the transition relation unchanged. We point out that the initial value of
the input variable debug fixes the value of print, which in turn fixes the transition
relation reflecting the presence of the printf-statement.

For Example 9 and Example 10 we have Xref = ∅. In the Peterson example
below, the refinement contains a state variable reflecting whether the cache state
has been propagated to main memory.
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control flow︷ ︸︸ ︷ data flow︷ ︸︸ ︷
((pc0 = 5 ∧ pc′0 = 6) ∧ (pc′1 = pc1) ∧ (

∧
var∈V \{flagP0c,flagP0} var′ = var) ∧ (flagP0c′ = 1)∧

(delay ∧ flagP0′ = flagP0 ∨ ¬delay ∧ flagP0′ = 1)
∨ (pc0 = 6 ∧ pc′0 = 7) ∧ (pc′1 = pc1) ∧ (

∧
var∈V \{turn} var′ = var) ∧ (turn′ = 1)

∨ (pc0 = 7 ∧ pc′0 = 8) ∧ (pc′1 = pc1) ∧ (
∧

var∈V var′ = var) ∧ (print⇒ ¬delay)
∨ (pc0 = 8 ∧ pc′0 = 9) ∧ (pc′1 = pc1) ∧ (

∧
var∈V var′ = var ∧ (¬flagP1 ∨ turn = 0)

∨ (pc0 = 9 ∧ pc′0 = 10) ∧ (pc′1 = pc1) ∧ (
∧

var∈V \{critical,flagP0} var′ = var)∧
(critical′ = critical + 1)∧
(¬delay ∧ flagP0′ = flagP0 ∨ delay ∧ flagP0′ = flagP0c)

∨ (pc0 = 10 ∧ pc′0 = 11) ∧ (pc′1 = pc1) ∧ (
∧

var∈V \{error} var′ = var)∧
(critical 6= 1⇒ error′ = error + 1)∧
(critical = 1⇒ error′ = error)

∨ (pc0 = 11 ∧ pc′0 = 12) ∧ (pc′1 = pc1) ∧ (
∧

var∈V \{critical} var′ = var) ∧ (critical′ = critical− 1)

∨ (pc0 = 12 ∧ pc′0 = 13) ∧ (pc′1 = pc1) ∧ (
∧

var∈V \{flagP0c,flagP0} var′ = var)∧
(flagP0c′ = 0) ∧ (flagP0′ = 0))

Fig. 5: A part of Tref for Listing 1.3 (where V def
= (X ∪Xref) \ {pc0, pc1})

Example 11. Peterson’s algorithm (Listing 1.3) can be modeled as a determin-
isitic STS. In this example we present the final refinement that makes all in-
volved mechnisms explicit. Alternatively, the mechanisms could be made ex-
plicit in successive refinement steps. Figure 5 shows the part of the transi-
tion relation that models P0. Let X = {pc0, pc1, flagP0, flagP0c, flagP1, flagP1c,
turn, critical, error, print} where flagP0c and flagP1c represent the locally cached
versions of the flags. We have I = ∅ and Iref = {thread, debug, reorder}, where
thread indicates whether P0 or P1 takes a step (thread is omitted in Figure 5).
Let Xref = {delay}, and let initref imply (print = debug ∧ delay = reorder). The
variable print indicates that the program version with printf-debugging is ex-
ecuted, and delay is true if the modifications of the flags flagP0 and flagP1 are
only committed to shared memory after entering the critical section (to avoid
clutter, we assume only two possible points for committing the modification of
flagP0). We use (print ⇒ ¬delay) to model the interplay between two mecha-
nisms where the printf instruction prevents reordering because of the added
barrier, resulting in a partial transition relation. Moreover, initref ensures that
flagP0 = flagP0c = flagP1 = flagP1c = turn = critical = error = 0 and pc0 = 5
and pc1 = 15, and finalref is pc0 = 13 ∧ pc1 = 23.

Note that the processor running the original nondeterministic version of Pe-
terson’s algorithm already has micro-architectural features that facilitate in-
struction reordering (not modeled in Example 11); the auxiliary input reorder
and variable delay merely make this mechanism observable.

3.2 Defining Causes

In the following, we provide a formal definition of causes inspired by Lewis’
counterfactuals [26] and the causality framework of Galles and Pearl [14].
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Definition 11 (Cause). Let S def
= (X, I ∪ M, init, final, T ) be a deterministic

STS, where I and M are disjoint sets of inputs, and let ϕ be an assertion. Let
M =MC ]MN . We say that MC is a cause with respect to M and ϕ and iff

∃πc, πw . I(πc) = I(πw) ∧MN (πc) =MN (πw) ∧ πc 6|= ϕ ∧ πw |= ϕ (1)

and MC is a minimal subset of M with this property.

We note that in the above definition we require the inputs I to agree on the
executions πc and πw, while only the inputs M may differ. The rationale is that
we want to apply this definition for studying the causes of Heisenbugs: We are
given some (nondeterministic) STS with inputs I, which has a Heisenbug. We
now consider some determinization of the STS to which we have added inputs
M , modelling the mechanisms responsible for the nondeterminism. The above
definition then allows to study the cause among the modelled mechanisms: A
subset MC ⊆ M is a cause of a Heisenbug, if the Heisenbug still occurs when
the inputs MN agree in the deviating executions πc and πw.

Proposition 1 (Existence of a Cause). Let S def
= (X, I, init, final, T ) be a non-

deterministic STS with a Heisenbug (Definition 8) with respect to an assertion
ϕ and let Sdet

def
= (X ∪Xdet, I ∪M, initdet, finaldet, Tdet) be a determinization of S.

Then there exists a cause MC with respect to M and ϕ.

Proof. Let πc and πw be executions of S that satisfy Definition 8. Since refine-
ments preserve executions, there must be executions πcdet and πwdet of Sdet such
that πcdet|(I∪X) = πc and πwdet|(I∪X) = πw. Now assume that πcdet and πwdet

agree on M (in addition to I). Let 〈sc, scdet〉 and 〈sw, swdet〉 be the initial states
of πcdet and πwdet, respectively. Since Sdet is input-deterministic, however, there
is at most one state 〈〈s, sdet〉, 〈i,m〉〉 |= initdet, hence 〈sc, scdet〉 = 〈sw, swdet〉.
Moreover, for every state 〈s, sdet〉, each input 〈i,m〉 determines a unique succes-
sor state 〈s′, s′det〉. Since πcdet|(I∪M) = πwdet|(I∪M ), this violates the assumption
that πcdet 6|= ϕ and πwdet |= ϕ. Hence, πcdet and πwdet must deviate on M . ut

Example 12. The Peterson example contains a Heisenbug with respect to ϕ def
=

(error = 0). Here, {reorder} and {thread} are causes, but {debug} is not: The set
{reorder} is a cause because of two executions which both have debug = false
and the same schedule interleaving the critical sections, but only one execution
sets reorder = true and hence exhibits the bug. The set {thread} is a cause be-
cause of two executions which both have debug = false and reorder = true where
one execution uses a sequential schedule of the two processes and the second
execution uses a schedule interleaving the critical sections. Only the second exe-
cution exhibits the bug. However, the set {debug} is not a cause because any two
executions would either both have to set reorder = false, making the bug impos-
sible or both set reorder = true. In this case, by counterposition the constraint
(print⇒ ¬delay) enforces debug = false, yielding a bug on both executions if the
schedule interleaves the critical sections or on no execution otherwise.
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3.3 Causes and Nondeterminism

By introducing the notion of a contributing cause below, we show that even in
the presence of nondeterminism we can still provide guarantees.

Definition 12 (Contributing Cause). Let S def
= (X, I ∪M, init, final, T ) be a

(potentially nondeterministic) STS, where I and M are disjoints set of inputs,
and let ϕ, M = MC ]MN satisfy the conditions in Definition 11. We call MC

a contributing cause of a Heisenbug.

We argue that any contributing cause must be a subset of a cause in a
corresponding determinization:

Theorem 1. Let S def
= (X, I ∪M, init, final, T ) be a nondeterministic STS and

let Sdet
def
= (X ∪Xdet, I ∪M ∪J, initdet, finaldet, Tdet) be a determinization of S. Let

MC be a contributing cause in S with respect to M and assertion ϕ. Then, there
exists a cause C in Sdet with respect to M ∪ J and ϕ such that MC ⊆ C \ J .

Proof. Consider two executions πc and πw satisfying Definition 12 for S. Since
refinement preserves executions, there must be executions πcdet and πwdet in
Sdet such that πcdet|(I∪M∪X) = πc and πwdet|(I∪M∪X) = πw and πcdet 6|= ϕ and
πwdet |= ϕ. By Definition 12, for MN = M \ MC it holds that πc|(I∪MN ) =
πw|(I∪MN ) and hence also πcdet|(I∪MN ) = πwdet|(I∪MN ). Hence (following an
argument similar to the one for Proposition 1) we argue that πcdet and πwdet

must deviate on a subset of MC ∪ J , i.e., there exists a cause C satisfying
Definition 11 such that C ⊆ MC ∪ J . Now assume that MC 6⊆ C. Then MC

is not minimal, since (MC ∩ C) also constitutes a contributing cause. Thus, we
must have MC ⊆ C \ J . ut

Example 13. The refined STS in Example 9 is nondeterministic as the initial val-
ues of filter and highEnergy are unconstrained. Following Definition 12, {thread}
is a contributing cause. Consider a further refinement with Iref = {initF, initH}
and init = (filter = initF∧highEnergy = initH∧isXray∧isHigh∧pc0 = 4∧pc1 = 10).
As the initial values are never read, the cause is again {thread}.

We provide a condition under which contributing causes are also causes:

Definition 13 (Cause in Presence of Nondeterminism). Consider a (po-
tentially nondeterministic) STS S

def
= (X, I ∪M, init, final, T ) such that for all

traces π, π′ of S with π|I∪M = π′|I∪M we have that

1. π ends in a final state if and only if π′ ends in a final state,
2. π |= ϕ if and only if π′ |= ϕ (in case both traces end in a final state).

Let ϕ, M =MC ]MN satisfy the conditions in Definition 11. We say that MC

is a cause in presence of nondeterminism with respect to M and ϕ.

We will next state a justification for the introduction of the above definition.
We first establish that input-enabled determinizations always exist:
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Proposition 2. Let S def
= (X, I, init, final, T ) be an input-enabled STS. Then, a

deterministic input-enabled refinement Sref always exists.

Proof. We set Iref = {oracle} for a single variable oracle, whose values are map-
pings of configurations to successors, i.e., oracle fixes a successor state s′ for every
configuration 〈s, i〉 such that 〈s, i, s′〉 |= T (note that at least one successor state
s′ always exists because of our assumption that S is input-enabled). We then
adopt Tref from T as the transition relation that moves to the successor state
fixed by the oracle variable. Likewise, we adopt the initial condition initref . ut

We next establish that no matter the input-enabled determinization S′ of
an STS S, a cause in the presence of nondeterminism in S is always a cause
in S′. Together with Proposition 2, which guarantees the existence of an input-
enabled determinization at least in theory, we obtain that a cause in presence of
nondeterminism can indeed by considered as a cause.

Theorem 2. Let MC be a cause in presence of nondeterminism with respect to
mechanisms M in an STS S def

= (X, I ∪M, init, final, T ). Let Sdet
def
= (X ∪Xdet, I ∪

M ∪ J, initdet, finaldet, Tdet) be an input-enabled determinization of S. Then MC

is also a cause in Sdet with respect to (I ∪ J).

Proof. Let πc and πw be executions of S that satisfy Definition 13. Since re-
finements preserve executions, there must be an execution πcdet of S such that
πcdet|(I∪M∪X) = πc. In particular, we have πcdet 6|= ϕ. Because Sdet is input-
enabled we can obtain a trace π of Sdet such that π|J = πcdet|J and π|I∪M =
πw|I∪M . Note that π induces a trace π′ of S with π′ = πwdet|I∪M∪X . Hence, by
the assumptions stated in Definition 13, the trace π′ is in fact an execution (i.e.,
ends with a final configuration), and we have π′ |= ϕ. Thus, we also get that π
is an execution and that we have π |= ϕ. ut

Example 14. The nondeterministic refinement of the Therac-25 STS in Exam-
ple 9 satisfies the properties in Definition 13. The refinement in Example 13 is
input-enabled and deterministic and the contributing cause is indeed a cause.

3.4 Testing and Causal Analysis

In the context of testing, an evaluation of Definition 11 and Definition 12, re-
spectively, is limited to the subset of the executions induced by a given test suite.
Lemma 1 characterizes the results that can be drawn by analyzing a subset of
the executions of an STS:

Lemma 1. Let πc and πw be executions satisfying Equation 1 in Definition 11
(or Definition 12, respectively) and let MC be the inputs deviating in πc and πw.
Then MC is a superset of a cause (or contributing cause, respectively).

Proof. Note that MC is a cause according to Definition 11 (or a contributing
cause according to Definition 12) if it is minimal with respect to Equation 1.
Otherwise, there must be a cause that is a subset of MC . ut
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Lemma 1 provides guarantees even if an exhaustive analysis is infeasible.
If, in addition, the conditions in Definition 13 are met (i.e., we can control or
at least observe the relevant mechanisms), then Proposition 2, Theorem 2, and
Lemma 1 guarantee that each overapproximation of a cause identified by testing
includes a non-empty (contributing) cause.

4 Analysis Methodology and Challenges

We sketch an (iterative) methodology for practical analyses based on the for-
malization above and showcase two possible instantiations and their challenges:
À Task: Starting from a Heisenbug (Definition 8), identify candidate mecha-

nisms M (e.g., consulting surveys [31]).
Challenge: The accuracy of the analysis is contingent on identifying the
relevant mechanisms.

Á Task: Pick a mechanism m ∈ M and adapt (or refine according to Defini-
tion 9) the model or system to make m controllable (or at least observable).
Challenge: The system may be inherently uncontrollable or unobservable,
or attempts to control/observe it potentially introduce a probe effect.

Â Task: Identify (contributing) causes by finding witnesses that deviate in as
few mechanisms as possible (i.e., satisfy Equation 1 in Definition 11).
Challenge: Testing will yield over-approximations only (cf. Lemma 1).

Ã Task: Check a stopping criterion to determine whether further mechanisms
or refinement steps are required (steps À and Á).
Challenge: Assessing whether all causes have been correctly identified is
challenging and may amount to fixing the bug and re-verifying the system.

Causal Analysis based on Model Checking. We built a NuSMV [5] model of
Peterson’s algorithm (Listing 1.3). We use self-composition [3], which composes
two copies Sw and Sc of the STS S, to reduce the existence of a counterexam-
ple trace and a witness trace (which is a hyperproperty) to the existence of a
single trace in the composed model. NuSMV can then construct the trace as a
counterexample to an LTL property over the composed model. As NuSMV usu-
ally considers infinite traces, final conditions are accounted for in the property.
The existence of a Heisenbug can be confirmed by checking that NuSMV finds
a counterexample to the property ψ := G(finalc ∧ finalw ⇒ (ϕw ⇒ ϕc)) for final
and ϕ as in Example 11 and Example 12 (where subscripted predicates range
over the matching variable set).

In step À, we pick the fact whether the print statements are executed and
model it adding variables printw and printc to the model (step Á). In step Â,
we invoke NuSMV on the property G(printw ⇔ printc) ⇒ ψ. As there is a
counterexample, we identify the empty set as a contributing cause.

We start another refinement iteration, pick concurrency as machanism (step
À) and model it by variables threadw and threadc (step Á). We check the property
G((printw ⇔ printc) ∧ (threadw ⇔ threadc)) ⇒ ψ (step Â). Again, there is a
counterexample and the empty set is a contributing cause.
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1 bool flag0 = false;
2 bool flag1 = false;
3 spinlock_t lock0, lock1;
4 void *thread0(void*) {
5 spin_lock(lock0);
6 flag0 = true;
7 assert (!flag1);
8 yield();
9 spin_lock(lock1);

10 flag0 = false;
11 spin_unlock(lock1);
12 yield();
13 spin_unlock(lock0);
14 }

15 void *thread1(void*) {
16 spin_lock(lock1);
17 flag1 = true;
18 assert (!flag0);
19 yield();
20 spin_lock(lock0);
21 flag1 = false;
22 spin_unlock(lock0);
23 yield();
24 spin_unlock(lock1);
25 }

Listing 1.4: An assertion fails if
(and only if) a deadlock occurs.

In the next refinement iteration, we pick the weak memory behavior (step
À) we model it by variables delayw and delayc and reflect the fact that print =⇒
¬delay (cf. Example 11) (step Á). Checking property G((printw ⇔ printc) ∧
(threadw ⇔ threadc) ∧ (delayw ⇔ delayc))⇒ ψ returns true, hence we have now
found a non-empty cause superset and can start cause minimization. A coun-
terexample to G((printw ⇔ printc) ∧ (threadw ⇔ threadc)) ⇒ ψ witnesses that
delay is a cause, similarly a counterexample to G((printw ⇔ printc) ∧ (delayw ⇔
delayc))⇒ ψ witnesses that thread is a cause. As the model satisfies G((delayw ⇔
delayc) ∧ (threadw ⇔ threadc))⇒ ψ, print is not a cause. This concludes step Â.
As we identified a non-empty cause, no more refinement steps are needed.

Test-based Causal Analysis. Consider the code in Listing 1.4, which might
deadlock because of a faulty locking discipline. The assertions in lines 7 and 18
fail when a deadlock, caused by a specific (combination of) context switche(s),
occurs: a context switch at line 8 to thread1 (or, symmetrically, from line 19 to
thread0) causes both threads to wait for a lock held by the other thread.

In step À, we identify concurrency (limited to the context switches marked
by yield for simplicity) as potential cause. Following the approach of KISS [32],
we control the scheduler (step Á) by sequentializing the concurrent program
and simulating the execution of a large subset of its interleavings. In KISS,
threads can be started and terminated nondeterministically at any point during
the execution. Using closures to save the local state of a thread, we add the
capability to re-enter a thread after its interruption by yield. The execution of
thread0 (thread1, respectively) can be interrupted at lines 8 and 12 (19 and
23, respectively). Our sequentialization enables us to explicitly control these
four context switches, inducing 24 potential schedules. Random (or systematic)
exploration of these schedules then yields executions that terminate normally
or violate an assertion. Failing executions deviate from the non-failing ones by
performing a context switch at lines 8 or 19, at least one of which must constitute
(part of) the candidate cause(s) we identify in step Â.
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Testing merely provides an over-approximation of the cause MC (Lemma 1).
Due to the minimality requirement in Definition 11 and Definition 12, however,
removing one element fromMC (by controlling the mechanism accordingly) elim-
inates the entire cause. Assume for now, that thread0 in Listing 1.4 always ex-
ecutes first, in which case the context switch at line 8 is a unique cause for the
deadlock. Consider an over-approximation comprising of two context switches at
lines 8 and 19. Blocking the context switch at line 8 eliminates the Heisenbug,
while blocking the one at line 19 doesn’t. By individually blocking the context
switches and checking whether subsequent testing provides sufficient confidence
that the bug has been eliminated, we obtain a stopping criterion in step Ã.

If, however, executions may start with thread0 or thread1, the context
switches at lines 8 and 19 form two independent (non-intersecting) causes (due
to the symmetry in Listing 1.4). Consequently, both context switches must be
identified to eliminate all causes of the bug (cf. Section 3.4). Blocking individual
context switches (as suggested above) does not provide a reliable stopping cri-
terion. Despite this limitation, testing-based analysis can help the developer to
narrow down the set of candidate causes significantly.

5 Related Work

Terminology and Definition of Heisenbugs. The first paper mentioning Heisen-
bugs [17] uses the term for transient software bugs which disappear under ob-
servation. In [18], bugs are classified into Bohrbugs (bugs manifesting consis-
tently), Mandelbugs (bugs with complex error propagation), and Heisenbugs
(bugs manifesting differently under the probe effect). In contrast to this infor-
mal classification, our definition is formal, covering Heisenbugs which stem from
the probe effect as well as from nondeterminism. The term is frequently (and
informally) used in the context of concurrency [30], where it exclusively refers
to bugs caused by control-flow nondeterminism. In the context of testing, the
notion of flaky tests [31] resembles the notion of Heisenbugs. The comparison of
failing and non-failing executions is used in several lines of research with goals
orthogonal to the definition of bug classes. Differential assertion checking [21]
compares failing and non-failing executions to define relative correctness of dif-
ferent program versions. In the context of diagnosability, the notion of critical
pairs of failing and non-failing executions with equivalent observations is used
to check whether faults can be detected at runtime [6].

Causality. Our definition of causality is inspired by Lewis’ counterfactuals [25].
The negation of Definition 11 mirrors the definition of causal irrelevance in [14]
and Definition 11 corresponds to its dual notion of causality between variables
[12]. A core difference is that our interventions are restricted to inputs that rep-
resent nondeterministic mechanisms rather than affecting arbitrary points of the
transition relation (or the causal model). Moreover, causal models have a fixed
propagation depth, while we consider an arbitrary number of unwindings of the
transition relation. Halpern and Pearl [20,19] provide a widely accepted defini-
tion of “actual” causes based on counterfactuals, where contingencies are used to
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control interference between interventions. Several lines of work reason about the
origin of system faults [23,2,10,4,16] using Halpern and Pearl’s notion of causal-
ity. In [8], actual causality is used to explain violations of hyperproperties. It
formalizes causes for violations of (arbitrary) universally quantified hyperprop-
erties as a hyperproperty with quantifier alternation, which can then be checked
with a model checker such as [13]. We formalize causes for Heisenbugs (a specific
hyperproperty) in terms of an existentially quantified hyperproperty.

Several approaches exist for automatically detecting causes of flaky tests.
The RootFinder tool [22] collects passing and failing executions and correlates
their differences with a specific cause. In [39] the authors present a tool for
finding code locations that lead to differences between succeeding and failing
executions. Identifying what happens in these locations is left to the developer.
In [36] and [29] the system is repeatedly executed under different configurations
to check which configuration influences the manifestation of the bug. All of these
approaches are based on computing correlations rather than performing rigorous
causal inference. In contrast, our framework is based on a formal causal analysis
accounting for interactions of multiple potential causes. [31] provides a taxonomy
of causes relevant in the context of automated testing.

6 Conclusion

While the term Heisenbug is widely used, its exact meaning often depends on
the context. We provide a formal definition that unifies the notion of Heisen-
bugs caused by a system alteration and those caused by nondeterminism. Fur-
thermore, we present a hyperproperty-based framework for determining which
mechanisms cause the manifestation of a Heisenbug. In particular, our approach
allows the identification of causes in the presence of multiple mechanisms that
could trigger a Heisenbug and gives guarantees for results of a causal analy-
sis even in presence of nondeterminism. Building on this result, we sketch a
methodology for causal analysis based on iterative refinement.
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