
Interpolant Strength Revisited

Georg Weissenbacher

Princeton University

Craig’s interpolation theorem has numerous applications in model checking,
automated reasoning, and synthesis. There is a variety of interpolation systems
which derive interpolants from refutation proofs; these systems are ad-hoc and
rigid in the sense that they provide exactly one interpolant for a given proof. In
previous work, we introduced a parametrised interpolation system which sub-
sumes existing interpolation methods for propositional resolution proofs and
enables the systematic variation of the logical strength and the elimination of
non-essential variables in interpolants. In this paper, we generalise this system to
propositional hyper-resolution proofs and discuss its application to proofs gener-
ated by contemporary SAT solvers. Finally, we show that, when applied to local
(or split) proofs, our extension generalises two existing interpolation systems for
first-order logic and relates them in logical strength.

1 Introduction

Craig interpolation [5] has proven to be an effective heuristic in applications such
as model checking, where it is used as an approximate method for computing
invariants of transition systems [18], and synthesis, where interpolants represent
deterministic implementations of specifications given as relations [14]. The in-
trinsic properties of interpolants enable concise abstractions in verification and
smaller circuits in synthesis. Intuitively, stronger interpolants provide more pre-
cision, and interpolants with fewer variables lead to smaller designs. However,
interpolation is mostly treated as a black box, leaving no room for a systematic
exploration of the solution space. In addition, the use of different interpola-
tion systems complicates a comparison of their interpolants. We present a novel
framework which generalises a number of existing interpolation techniques and
supports a systematic variation and comparison of the generated interpolants.

Contributions. We present a novel parametrised interpolation system which ex-
tends our previous work on propositional interpolation [7].
– The extended system supports hyper-resolution (see § 3) and allows for sys-

tematic variation of the logical strength (with an additional degree of free-
dom over [7]) and the elimination of non-essential literals [6] in interpolants.

– We discuss (in § 4) the application of our interpolation system to hyper-
resolution steps (introduced by pre-processing [10], for instance) and refuta-
tions generated by contemporary SAT solvers such as MiniSAT [8].

– When applied to local (or split) proofs [13], the extended interpolation sys-
tem generalises the existing interpolation systems for first-order logic pre-
sented in [15] and [25] and relates them in logical strength (§ 5).

Published at SAT 2012. The original publication is available at www.springerlink.com

2 Background

This section introduces our notation (§ 2.1) and restates the main results of our
previous paper on labelled interpolation systems [7] in § 2.2.

2.1 Formulae and Proofs

In our setting, the term formula refers to either a propositional logic formula or
a formula in standard first-order logic.

Propositional Formulae. We work in the standard setting of propositional logic
over a set X of propositional variables, the logical constants T and F (denoting
true and false, respectively), and the standard logical connectives ∧, ∨, ⇒, and
¬ (denoting conjunction, disjunction, implication, and negation, respectively).

Moreover, let LitX = {x, x |x ∈ X} be the set of literals over X, where x is
short for ¬x. We write var(t) for the variable occurring in the literal t ∈ LitX . A
clause C is a set of literals. The empty clause � contains no literals and is used
interchangeably with F. The disjunction of two clauses C and D is their union,
denoted C ∨D, which is further simplified to C ∨ t if D is the singleton {t}. A
propositional formula in Conjunctive Normal Form (CNF) is a conjunction of
clauses, also represented as a set of clauses.

First-Order Logic. The logical connectives from propositional logic carry over
into first-order logic. We fix an enumerable set of variables, function and predi-
cate symbols over which formulae are built in the usual manner. The vocabulary
of a formula A is the set of its function and predicate symbols. L(A) refers to
the set of well-formed formulae which can be built over the vocabulary of A.

Variables may be universally (∀) or existentially (∃) quantified. A formula is
closed if all its variables are quantified and ground if it contains no variables. As
previously, conjunctions of formulae are also represented as sets.

Given a formula A in either first-order or propositional logic, we use Var(A)
to denote the set of free (unquantified) variables in A.

Inference Rules and Proofs. We write A1, · · · , An |= A to denote that the for-
mula A holds in all models of A1, . . . , An (where n ≥ 0). An inference rule

A1 · · · An
A

(1)

associates zero or more premises (or antecedents) A1, . . . , An with a conclusion
A. The inference rule (1) is sound if A1, . . . , An |= A holds. A (sound) inference
system I is a set of (sound) inference rules.

Propositional resolution, for example, is a sound inference rule stating that
an assignment satisfying the clauses C ∨ x and D ∨ x also satisfies C ∨D:

C ∨ x D ∨ x
C ∨D [Res]

The clauses C ∨ x and D ∨ x are the antecedents, x is the pivot, and C ∨ D is
the resolvent. Res(C,D, x) denotes the resolvent of C and D with the pivot x.

Definition 1 (Proof). A proof (or derivation) P in an inference system IP is
a directed acyclic graph (VP , EP , `P , sP), where VP is a set of vertices, EP is a
set of edges, `P is a function mapping vertices to formulae, and sP ∈ VP is the
sink vertex. An initial vertex has in-degree 0. All other vertices are internal and
have in-degree ≥ 1. The sink has out-degree 0. Each internal vertex v with edges
(v1, v), . . . , (vm, v) ∈ EP is associated with an inference rule Inf ∈ IP , i.e.,

`P (v1) · · · `P (vm)

`P (v)
[Inf] .

The subscripts above are dropped if clear. A vertex vi in P is a parent of vj if
(vi, vj) ∈ EP . A proof P is a refutation if `P (sP) = F. Let A and B conjunctive
formulae. A refutation P is an (A,B)-refutation of an unsatisfiable formula A∧B
if `P (v) is a conjunct of A or a conjunct of B for each initial vertex v ∈ VP . A
proof is closed (ground, respectively) if `P (v) is closed (ground) for all v ∈ VP .

In the following, we use the propositional resolution calculus to instantiate
Definition 1.

Definition 2 (Resolution Proof). A resolution proof R is a proof in the
inference system comprising only the resolution rule Res. Consequently, `R maps
each vertex v ∈ VR to a clause, and all internal vertices have in-degree 2. Let
pivR be the function mapping internal vertices to pivot variables. For an internal
vertex v and (v1, v), (v2, v) ∈ ER, `R(v) = Res(`R(v1), `R(v2), pivR(v)).

Note that the value of `R at internal vertices is determined by that of `R at
initial vertices and the pivot function pivR. We write v+ for the parent of v with
piv(v) in `(v+) and v− for the parent with ¬piv(v) in `(v−). A resolution proof
R is a resolution refutation if `R(sR) = �.

2.2 Interpolation Systems and Labelling Functions

There are numerous variants and definitions of Craig’s interpolation theorem [5].
We use the definition of a Craig-Robinson interpolant given by Harrison [11]:

Definition 3 (Interpolant). A Craig-Robinson interpolant for a pair of for-
mulae (A,B), where A ∧B is unsatisfiable, is a formula I whose free variables,
function and predicate symbols occur in both A and B, such that A ⇒ I, and
B ⇒ ¬I holds.

Craig’s interpolation theorem guarantees the existence of such an interpolant
for unsatisfiable pairs of formulae (A,B) in first order logic. Consequently, it also
holds in the propositional setting, where the conditions of Definition 3 reduce to
A⇒ I, B ⇒ ¬I, and Var(I) ⊆ Var(A) ∩Var(B).

Numerous techniques to construct interpolants have been proposed (c.f. § 6).
In particular, there is a class of algorithms that derive interpolants from proofs;

the first such algorithm for the sequent calculus is present in Maehara’s con-
structive proof [17] of Craig’s theorem. In this paper, we focus on interpolation
systems that construct an interpolant from an (A,B)-refutation by mapping the
vertices of a resolution proof to a formula called the partial interpolant.

Formally, an interpolation system Itp is a function that given an (A,B)-
refutation R yields a function, denoted Itp(R,A,B), from vertices in R to for-
mulae over Var(A) ∩ Var(B). An interpolation system is correct if for every
(A,B)-refutation R with sink s, it holds that Itp(R,A,B)(s) is an interpolant
for (A,B). We write Itp(R) for Itp(R,A,B)(s) when A and B are clear. Let
v be a vertex in an (A,B)-refutation R. The pair (`(v), Itp(R,A,B)(v)) is an
annotated clause and is written `(v) [Itp(R,A,B)(v)] in accordance with [19].

In the following, we review the labelled interpolation systems we introduced
in [7]. This approach generalises several existing propositional interpolation sys-
tems presented by Huang [12], Kraj́ıček [16] and Pudlák [21], and McMillan [18].
A distinguishing feature of a labelled interpolation system is that it assigns an
individual label c ∈ {⊥, a, b, ab} to each literal in the resolution refutation.

Definition 4 (Labelling Function). Let (S,v,u,t) be the lattice below, where
S = {⊥, a, b, ab} is a set of symbols and v, u and t are defined by the Hasse
diagram to the right. A labelling function LR : VR× Lit→ S for a refutation R
over a set of literals Lit satisfies that for all v ∈ VR and t ∈ Lit:

1. LR(v, t) = ⊥ iff t /∈ `R(v)
2. LR(v, t) = LR(v1, t) t · · · t LR(vm, t) for an internal

vertex v, its parents {v1, · · · , vm}, and literal t ∈ `R(v). ⊥

a b

ab

Due to condition (2) above, the labels of literals at initial vertices completely
determine the labelling function for literals at internal vertices. The following
condition ensures that a labelling function respects the locality of a literal t
with respect to (A,B). A literal t is A-local and therefore labelled a if var(t) ∈
Var(A) \ Var(B). Conversely, t is B-local and therefore labelled b if var(t) ∈
Var(B) \ Var(A). Literals t for which var(t) ∈ Var(A) ∩ Var(B) are shared and
can be labelled a, b, or ab (which generalises existing interpolation systems).

Definition 5 (Locality). A labelling function for an (A,B)-refutation R pre-
serves locality if for any initial vertex v and literal t in R
1. a v L(v, t) implies that var(t) ∈ Var(A), and
2. b v L(v, t) implies that var(t) ∈ Var(B) .

For a given labelling function L, we define the downward projection of a

clause at a vertex v with respect to c ∈ S as `(v)�c,L
def
= {t ∈ `(v) |L(v, t) v c}.

and the upward projection `(v)�c,L as `(v)�c,L
def
= {t ∈ `(v) | c v L(v, t)}. The

subscript L is omitted if clear from the context.

Definition 6 (Labelled Interpolation System for Resolution). Let L be
a locality preserving labelling function for an (A,B)-refutation R. The labelled
interpolation system Itp(L) maps vertices in R to partial interpolants as follows:

For an initial vertex v with `(v) = C

(A-clause)
C [C�b]

if C ∈ A (B-clause)
C [¬(C�a)]

if C ∈ B

For an internal vertex v with piv(v) = x, `(v+) = C1 ∨ x and `(v−) = C2 ∨ x

C1 ∨ x [I1] C2 ∨ x [I2]

C1 ∨ C2 [I3]

(A-Res) if L(v+, x) t L(v−, x) = a, I3
def
= I1 ∨ I2

(AB-Res) if L(v+, x) t L(v−, x) = ab, I3
def
= (x ∨ I1) ∧ (x ∨ I2)

(B-Res) if L(v+, x) t L(v−, x) = b, I3
def
= I1 ∧ I2

Labelling functions provide control over the interpolants constructed from a
resolution proof. Firstly, labelled interpolation systems support the elimination
of non-essential (peripheral [24], respectively) variables from interpolants [6].
Secondly, labelled interpolation systems – and their respective interpolants – are
ordered by logical strength. A labelled interpolation system Itp(L) is stronger
than Itp(L′) if for all refutations R, Itp(L,R)⇒ Itp(L′, R). The partial order �
on labelling functions (first introduced in [7]) guarantees an ordering in strength:

Definition 7 (Strength Order). We define the total order � on the lattice
S = {⊥, a, b, ab} as b � ab � a � ⊥ (c.f. the Hasse diagram to the right).
Let L and L′ be labelling functions for an (A,B)-refutation R. The function
L is stronger than L′, denoted L � L′, if for all v ∈ VR and t ∈ `(v),
L(v, t) � L′(v, t).

b

ab

a

⊥

Theorem 2 in [7] shows that if L is a stronger labelling function than L′, the
interpolant obtained from Itp(L) logically implies the one obtained from Itp(L′).

3 Interpolation for Hyper-Resolution

In this section, we extend labelled interpolation systems to a richer inference
system, in particular, the inference system comprising (propositional) hyper-
resolution [22]. Hyper-resolution is a condensation of a derivation consisting of
several resolutions and avoids the construction of intermediate clauses. Hyper-
resolution has several applications in propositional satisfiability checking, such
as pre-processing [10] of formulae or as an integral part of the solver (e.g., [2]).

Positive hyper-resolution combines a single clause (called the nucleus) con-
taining n negative literals x1, . . . , xn and n satellite clauses each of which con-
tains one of the corresponding non-negated literals xi (where 1 ≤ i ≤ n):

satellites︷ ︸︸ ︷
(C1 ∨ x1) · · · (Cn ∨ xn)

nucleus︷ ︸︸ ︷
(x1 ∨ · · · ∨ xn ∨D)∨n

i=1 Ci ∨D
[HyRes]

In negative hyper-resolution the rôles of xi and xi are exchanged.

Definition 8 (Hyper-Resolution Proof). A hyper-resolution proof R is a
proof using only the inference rule HyRes. Accordingly, `R maps each vertex
v ∈ VR to a clause, and all internal vertices have in-degree ≥ 2. Each internal
vertex v has n ≥ 1 parents v+1 , . . . , v

+
n such that `R(v+i) = Ci∨xi and one parent

v− with `R(v−) = x1 ∨ · · · ∨ xn ∨D, and consequently, `R(v) =
∨n
i=1 Ci ∨D.

The definition of labelling functions (Definition 4) readily applies to hyper-
resolution proofs. Note that� is not a total order on labelling functions. Lemma 1
(a generalisation of Lemma 3 in [7] to hyper-resolution proofs) enables a com-
parison of labelling functions based solely on the values at the initial vertices.

Lemma 1. Let L and L′ be labelling functions for an (A,B)-refutation R. If
L(v, t) � L′(v, t) for all initial vertices v and literals t ∈ `(v), then L � L′.

The following definition provides a labelled interpolation system for hyper-
resolution proofs.

Definition 9 (Labelled Interpolation System for Hyper-Resolution).
Let L be a locality preserving labelling function for an (A,B)-refutation R, where
R is a hyper-resolution proof. The labelled interpolation system Itp(L) maps ver-
tices in R to partial interpolants as defined below.1

For an initial vertex v with `(v) = C

(A-clause)
C [C�b]

if C ∈ A (B-clause)
C [¬(C�a)]

if C ∈ B

For an internal vertex v with predecessors {v+1 , . . . , v+n , v−} (where n ≥ 1)
with `(v+i) = (Ci ∨ xi), for 1 ≤ i ≤ n, and `(v−) = (D ∨ x1 ∨ · · · ∨ xn)

C1 ∨ x1 [I1] · · · Cn ∨ xn [In] x1 ∨ · · · ∨ xn ∨D [In+1]∨n
i=1 Ci ∨D [I]

(A-HyRes) if ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = a, I
def
=
∨n+1
i=1 Ii

(AB-HyRes) if ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = ab,

1.) I
def
=
∧n
i=1(xi ∨ Ii) ∧ (In+1 ∨

∨n
i=1 xi), or

2.) I
def
=
∨n
i=1(xi ∧ Ii) ∨ (In+1 ∧

∧n
i=1 xi)

(B-HyRes) if ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = b, I
def
=
∧n+1
i=1 Ii

The system can be easily extended to negative hyper-resolution. In fact, Itp
can be generalised by replacing the variables x1, . . . , xn in the definition with

1 Note that unlike the interpolation system for ordinary resolution proofs presented
in Definition 6, Itp is not total for hyper-resolution proofs (see discussion in § 4).

literals t1, . . . , tn, since the proofs of our theorems below are not phase-sensitive.
We avoid this generalisation to simplify the presentation.

Note that the interpolation system leaves us a choice for internal nodes
AB−HyRes. We will use Itp1 (Itp2, respectively) to refer to the interpolation
system that always chooses case 1 (case 2, respectively). Note furthermore that
Definition 6 and Definition 9 are equivalent in the special case where n = 1.

Before we turn to the correctness of our novel interpolation system, we point
out the limitation stated in Footnote 1. There are labelling functions L and proofs
R for which the function Itp(L,R) is not total. This restriction is imposed by the
case split in Definition 9 which requires the pivots of the hyper-resolution step
to be uniformly labelled. We address this issue in § 4 and present a provisional
conditional correctness result.

Theorem 1 (Correctness). For any (A,B)-refutation R (where R is a hyper-
resolution proof) and locality preserving labelling function L, Itp(L,R) (if de-
fined) is an interpolant for (A,B).

The proof2 of Theorem 1 establishes that for each vertex v ∈ VR with `R(v) =
C and I = Itp(L,R)(v), the following conditions hold:

– A ∧ ¬(C�a,L)⇒ I,
– B ∧ ¬(C�b,L)⇒ ¬I, and
– Var(I) ⊆ Var(A) ∩Var(B).

For `R(s) = �, this establishes the correctness of the system.
We emphasise that Theorem 1 does not constrain the choice for the case

AB−HyRes. Since both Itp1(L,R) and Itp2(R,L) satisfy the conditions above,
this choice does not affect the correctness of the interpolation system. In fact,
it is valid to mix both systems by defining a choice function χ : VR → {1, 2}
which determines which interpolation system is chosen at each internal node. We
use Itpχ(L,R) to denote the resulting interpolation system. This modification,
however, may have an impact on the logical strength of the resulting interpolant.

Theorem 2. Let the hyper-resolution proof R be an (A,B)-refutation and L be a
locality preserving labelling function. Moreover, let Itpχ(L,R) and Itpχ′(L,R) be
labelled interpolation systems (defined for L,R) with the choice functions χ and
χ′, respectively. Then Itpχ(L,R) ⇒ Itpχ′(L,R) if χ(v) ≤ χ′(v) for all internal
vertices v ∈ VR.

Proof sketch: This follows (by structural induction over R) from

(
∧n
i=1(xi ∨ Ii) ∧ (In+1 ∨

∨n
i=1 xi))⇒ (

∨n
i=1(xi ∧ Ii) ∨ (In+1 ∧

∧n
i=1 xi)) . �

Note that the converse implication does not hold; a simple counterexample for
an internal vertex with n = 2 is the assignment x1 = x2 = F, I1 = T, and
I2 = I3 = F.

The final theorem in this section extends the result of Theorem 2 in [7] to
hyper-resolution proofs:

2 All proofs can be found in the Appendix.

Theorem 3. If L and L′ are labelling functions for an (A,B)-refutation R
(R being a hyper-resolution proof) and L � L′ such that Itpi(L,R) as well as
Itpi(L

′, R) are defined, then Itpi(L,R)⇒ Itpi(L
′, R) (for a fixed i ∈ {1, 2}).

The proof of Theorem 3, is led by structural induction over R. For any vertex
v in R, let Iv and I ′v be the partial interpolants due to Itpi(L,R) and Itpi(L

′, R),
respectively. We show that Iv ⇒ I ′v ∨ {t ∈ `R(v) |L(v, t) t L′(v, t) = ab} for all
vertices v, establishing Iv ⇒ I ′v for the sink to show that Itpi(L,R)⇒ Itpi(L

′, R).
Theorems 2 and 3 enable us to fine-tune the strength of interpolants, since the

sets of all labelling and choice functions ordered by � and ≤, respectively, form
complete lattices (c.f. [7, Theorem 3]). Finally, we remark that the Theorems
2 and 3 are orthogonal. The former fixes the labelling function L, whereas the
latter fixes the choice function χ.

4 Hyper-Resolution and Resolution Chains

Contemporary proof-logging SAT solvers typically generate compacted proofs.
MiniSAT [8], for example, discards all intermediate resolvents generated during
the construction of a conflict clause and retains only resolution chains.

Definition 10 (Chain). A (resolution) chain of length n is a tuple consisting of
an input clause D0 and an ordered sequence of clause-pivot pairs 〈Ci, xi〉 (where
1 ≤ i ≤ n). The final resolvent Dn of a resolution chain is defined inductively
as Di = Res(Di−1, Ci, xi).

If D0 is a nucleus and C1, . . . , Cn are suitable satellites, the chain can be
replaced by a hyper-resolution step if its conclusion Dn satisfies the HyRes rule.
In general, this may not be the case: in the presence of merge literals [1], the final
resolvent of a chain may depend on the order of the ordinary resolution steps.
For example, the chain ({x1, x2}, [〈{x2}, x2〉, 〈{x1, x2}, x1〉]) yields the resolvent
{x2}, whereas swapping the clause-pivot pairs leads to the resolvent �. This
is because the literal x2 is re-introduced after being eliminated in the original
chain, while it is merged and eliminated once and for all in the modified chain.

In the absence of merge literals, this issue does not arise. The following
definition is a generalisation of merge-free edges (c.f. [7, § 5.1]) to chains.

Definition 11 (Strongly Merge-Free). A chain

(D0, [〈t1 ∨ C1, var(t1)〉, . . . , 〈tn ∨ Cn, var(tn)〉])

is strongly merge-free if {t1, · · · , tn} ∩ Ci = ∅ for all 1 ≤ i ≤ n.

Strongly merge-free chains are insensitive to changes in the order of the
resolution steps in the sense that any permutation of the clause-pivot sequence
still represents a valid resolution proof (an immediate consequence of [7, Lemma
4]) with the final resolvent (D0\{t1, . . . , tn})∨

∨n
i=1 Ci. This property is stronger

than just requiring that the sequence of resolution steps defined by a chain
contains no merge literals; it demands that {t0, . . . , tn} ⊆ D0.3

Corollary 1. Any strongly merge-free chain

(x1 ∨ · · · ∨ xn ∨D0, [〈x1 ∨ C1, x1〉, . . . , 〈xn ∨ Cn, xn〉])

corresponds to a hyper-resolution step

(C1 ∨ x1) · · · (Cn ∨ xn) (x1 ∨ · · · ∨ xn ∨D)∨n
i=1 Ci ∨D

.

Consequently, Definition 11 provides a sufficient (but not necessary) condi-
tion for replacing chains with hyper-resolution steps. We emphasise that Corol-
lary 1 can be generalised by replacing the variables x1, . . . , xn in the respective
definitions with literals t1, . . . , tn (c.f. § 3).

By definition, a single chain can be split into two consecutive chains, with
the final resolvent of the first acting as the input clause of the second, without
affecting the final result. Therefore, chains that are not merge-free can be split
repeatedly until the resulting sub-sequences become strongly merge-free.

A further incentive for splitting is to enable interpolation. By splitting hyper-
resolution steps whose literals are not uniformly labelled (recall the remark in § 3)
we can always generate a labelled refutation for which Itp is a total function.
The following example illustrates this transformation for a single resolution step:

(
a
x1 ∨C1) (

ab
x2 ∨C2) (

a
x3 ∨C3) (

a
x4 ∨C4) (

a
x1 ∨

a
x2 ∨

a
x3 ∨

b
x4 ∨D)

C1 ∨ C2 ∨ C3 ∨ C4 ∨D

(
a
x1 ∨C1) (

a
x3 ∨C3) (

a
x1 ∨

a
x2 ∨

a
x3 ∨

b
x4 ∨D)

(
a
x2 ∨

b
x4 ∨C1 ∨ C3 ∨D)

[A-HyRes]
(
ab
x2 ∨C2) (

a
x4 ∨C4)

C1 ∨ C2 ∨ C3 ∨ C4 ∨D
[AB-HyRes]

Each hyper-resolution step may need to be rewritten into at most three
uniformly labelled steps (a, b, ab), thus changing the proof structure. Note that
the results on the relative strength of interpolants in § 3 naturally only apply if
both proofs have the same structure. The effect of the order of resolution steps
on interpolants is discussed in [7, § 5.2] and exceeds the scope of this paper.

5 Local Refutations and Hyper-Resolution

Jhala and McMillan demonstrate in [13, Theorem 3] that the applicability of
propositional interpolation systems is not restricted to propositional logic. If a

3 This condition, however, can be met by extending the chain with an additional
resolution step Res(D0, t∨ t∨T, var(t)) for any t ∈ D0, which introduces the missing
literals T ⊆ {t0, . . . , tn}. This transformation is valid since t ∨ t ∨ T is a tautology.

first-order refutation R has a certain structure, namely if for each inference step
in R the antecedents as well as the conclusion are either entirely in L(A) or in
L(B), then one can use a propositional interpolation system (such as the ones in
§ 2.2 and § 3) to construct an interpolant that is a Boolean combination of the
formulae in R. Kovács and Voronkov subsequently arrived at a similar result [15].

We recapitulate the results from [13, 15] before we proceed to show that our
interpolation system from Definition 9 generalises the system of [15] as well as
a variation of [15] presented in [25].

Definition 12 (Local Refutation). An (A,B)-refutation R in a given in-
ference system for first-order logic is local if there exists a total partitioning
function πR : VR → {A,B} such that for all edges (v1, v2) ∈ ER we have
`R(v1), `R(v2) ∈ L(πR(v2)).

While proofs in general do not have this property, there is a variety of decision
procedures that yield local (ground) refutations. The construction of local proofs
is addressed in [13, 20, 9, 15], to name only a few.

The following operation, which resembles the constructions in [15, Lemma
8], [13, Theorem 3], and [9, Section 5.5]), extracts a premise in L(A) (L(B),
respectively) for a vertex v ∈ VR with π(v) = A (π(v) = B, respectively) from a
local refutation R.

Definition 13 (A-Premise, B-Premise). Let R be a local (A,B)-refutation
with partitioning function π, and let v ∈ VR such that π(v) = A. Then

A-premise (v)
def
=

{u | (u, v) ∈ ER and π(u) = B or u is initial } ∪⋃
{A-premise (u) | (u, v) ∈ ER and π(u) = A } .

B-premise(v) is defined analogously.

Intuitively, A-premise(v) comprises the leaves of the largest sub-derivation
S rooted at v such that π(u) = A for all internal vertices u ∈ VS .4 If the
underlying inference system is sound, we have {`(u) |u ∈ A-premise(v)} |= `(v).
If, moreover, `(v) as well as all formulae of A-premise(v) are closed, we make the
following observation (c.f. related results in [15, Lemma 1] and [9, Lemma 3]):

Corollary 2. Let R be a local closed refutation in a sound inference system,
and let v ∈ VR an internal vertex such that πR(v) = A. Then, the following
Horn clause is a tautology: ∨

u∈A-premise(v)

¬`R(u) ∨ `R(v) (2)

A similar claim holds for the case in which π(v) = B.

4 In particular, it is possible to choose πR in such a manner that S is the largest sub-
derivation rooted at v in R such that `R(u) ∈ L(A) for all u ∈ VS . This corresponds
to the setting in [15, Lemma 8].

Corollary 2 is a pivotal element in our proof of the following theorem:

Theorem 4. (c.f. [13, Theorem 3]) Let R be a closed local (A,B)-refutation in
a sound inference system. Then one can extract a Craig-Robinson interpolant
from R using a propositional interpolation system.

Proof: Let v ∈ VR be such that π(v) = A. If v is initial, then either A or
B contains the unit clause Cv = `(v). Otherwise, according to Corollary 2, the
clause Cv = ({¬`(u) |u ∈ A-premise(v)} ∨ `(v)) is tautological (and therefore
implied by A). Moreover, it follows from Definition 12 that if u ∈ A-premise(v)
is not an initial vertex of R then `R(u) ∈ L(A) ∩ L(B) holds. Accordingly,
Cv ∈ L(A), and we add Cv to A. A similar argument holds for v ∈ VR with
π(v) = B.

By construction, the resulting set of clauses Cv, v ∈ VR, is propositionally
unsatisfiable [13, 15]; also, each clause is implied by either A or B. Moreover, all
literals with t ∈ L(A) \ L(B) (t ∈ L(B) \ L(A), respectively) are local to A (B,
respectively). Accordingly, it is possible to construct an interpolant for (A,B)
using the interpolation systems presented in § 2.2 and § 3.

Kovács and Voronkov avoid the explicit construction of a resolution proof by
defining their interpolation system directly on the local proof [15, Theorem 11]:

Definition 14. Let R be a local and closed (A,B)-refutation. The interpolation
system ItpKV maps vertices v ∈ VR for which `R(v) ∈ L(A) ∩ L(B) holds to
partial interpolants as defined below.

For an initial vertex v

(A-clause)
`(v) [`(v)]

if `(v) ∈ A (B-clause)
`(v) [¬`(v)]

if `(v) ∈ B

For an internal vertex v with {v1, . . . , vn} = π(v)-premise(v) such that

`(vi) ∈ L(A) ∩ L(B) for 1 ≤ i ≤ m ≤ n and

`(vj) 6∈ L(A) ∩ L(B) for m < j ≤ n .

`(v1) [I1] · · · `(vm) [Im] `(vm+1) · · · `(vn)

`(v) [I]

(A-justified) if π(v) = A, I
def
=
∧m
i=1(`(vi) ∨ Ii) ∧

∨m
i=1 ¬`(vi)

(B-justified) if π(v) = B, I
def
=
∧m
i=1(`(vi) ∨ Ii)

Remark. In addition to the condition in Definition 12, Kovács and Voronkov
require that for each v ∈ VR with predecessors v1, . . . , vn, `(v) ∈ L(A) ∩L(B) if
`(vi) ∈ L(A) ∩ L(B) for all i ∈ {1..n}. A local derivation satisfying this condi-
tion is symbol-eliminating, i.e., it does not introduce “irrelevant” symbols. This
technical detail allows the leaves of R to be merely implied by A (or B) instead
of being actual elements of A (B, respectively), while preserving the correctness

of the interpolation system. This effectively enables interpolation for non-closed
formulae (A,B).

We proceed to show one of the main results of this paper, namely that our
interpolation system Itp from Definition 9 is able to simulate the interpolation
system ItpKV .

Theorem 5. Let R be a local and closed (A,B)-refutation. Then we can con-
struct a hyper-resolution refutation H of (A,B) and a locality preserving labelling
function L such that for each v ∈ VR with `R(v) ∈ L(A) ∩ L(B) there exists a
corresponding vertex u ∈ VH such that ItpKV (R)(v)⇔ Itp1(L,H)(u).

Proof sketch: We demonstrate that it is possible to construct a hyper-reso-
lution refutation H of (A,B) in which each internal step of ItpKV is simulated
using two hyper-resolution steps. The induction hypothesis is that for each inter-
nal vertex v ∈ VR with {v1, . . . , vn} = π(v)-premise(v) and m as in Definition 14,
we have vertices {u1, . . . , un} ⊆ VH such that

1. `H(ui) = `R(vi) for 1 ≤ i ≤ n, and
2. Itp1(L,H)(ui)⇔ ItpKV (R)(vi) for 1 ≤ i ≤ m, and

3. Itp1(L,H)(uj) =

{
F if `(vj) ∈ A
T if `(vj) ∈ B

for m < j ≤ n.

We add an auxiliary vertex labelled with the clause ¬`H(u1)∨· · ·∨¬`H(un)∨
`R(v), which, by Corollary 2 and by Definition 12, can be regarded as element of
formula π(v) (see proof of Theorem 4). The first hyper-resolution step eliminates
the literals local to π(v); the interpolants and labels are indicated for π(v) = A:

a

`H(um+1) [F] · · ·
a

`H(un) [F] (
a

¬`H(um+1) ∨ · · · ∨
a

¬`H(un) ∨ · · · ∨
a

`R(v)) [F]

(
ab

¬`H(u1) ∨ · · · ∨
ab

¬`H(um) ∨
a

`R(v)) [F]

The second hyper-resolution step eliminates the shared literals `H(ui) (for
1 ≤ i ≤ m). Again, the labels and interpolants are for the case that π(v) = A:

`H(u1) [I1] · · · `H(um) [Im] (
ab

¬`H(u1) ∨ · · · ∨
ab

¬`H(um) ∨
a

`R(v)) [F]
a

`R(v) [
∧m
i=1(`H(ui) ∨ Ii]) ∧ (F ∨

∨m
i=1 ¬`H(ui))]

The sink of this resolution step is the vertex u ∈ VH such that `H(u) = `R(v)
and Itp1(L,H)(u) = ItpKV (v). �

We proceed to show that our system for hyper-resolution also generalises
another existing interpolation system for local refutations. In [25], we introduced
the following variation of the interpolation system in Definition 14:

Definition 15. Let ItpW be the interpolation system as described in Defini-
tion 14, except for the following modification:

(A-justified) if π(v) = A, I
def
=
∨m
i=1(¬`(vi) ∧ Ii)

(B-justified) if π(v) = B, I
def
=
∨m
i=1(¬`(vi) ∧ Ii) ∨

∧m
i=1 `(vi)

The following theorem states that the interpolation system in Definition 9 is
powerful enough to simulate ItpW .

Theorem 6. Let R be a local and closed (A,B)-refutation. Then we can con-
struct a hyper-resolution refutation H of (A,B) and a locality preserving labelling
function L such that for each v ∈ VR with `R(v) ∈ L(A) ∩ L(B) there exists a
corresponding vertex u ∈ VH such that ItpW (R)(v)⇔ Itp2(L,H)(u).

The proof is essentially equivalent to the proof of Theorem 5. Moreover, as
a consequence of Theorem 2, ItpKV is stronger than ItpW .

Corollary 3. Let R be a closed local (A,B)-refutation in a sound inference
system. Then ItpKV (R)⇒ ItpW (R).

6 Related Work

There is a vastly growing number of different interpolation techniques; a recent
survey of interpolation in decision procedures is provided by [3]. An exposition of
interpolation techniques for SMT solvers can be found in [4]. The work of Yorsh
and Musuvathi [26] enables the combination of theory-specific and propositional
interpolation techniques [12, 16, 21, 18, 7].

The novel interpolation system presented in Section 3 extends our prior work
on propositional interpolation systems [7]. The idea of using labelling functions
(initially introduced in [24] in the context of LTL vacuity detection to determine
the peripherality of variables in resolution proofs) is common to both approaches.

A number of interpolation techniques provide local proofs (e.g., [13, 20, 9, 15]).
Not all interpolation techniques are based on local proofs, though: McMillan’s
interpolating inference system for equality logic with uninterpreted functions and
linear arithmetic [19], for instance, performs an implicit conversion of the proof,
and the approach presented in [23] avoids the construction of proofs altogether.

7 Consequences and Conclusion

We present a novel interpolation system for hyper-resolution proofs which gener-
alises our previous work [7]. By applying our technique to local proofs, we com-
bine a number of first-order [15, 25] and propositional interpolation techniques
[12, 16, 21, 18] into one uniform interpolation approach. As in [13], our approach
avoids an explicit theory combination step [26]. Therefore, it enables the varia-
tion of interpolant strength and the elimination of non-essential literals across the
theory boundary. Finally, by defining a rule that addresses hyper-resolution steps
(introduced by pre-processing or extracted from resolution chains), we avoid the
construction of intermediate partial interpolants. An experimental evaluation of
the benefit on overhead and interpolant size is future work.

References

1. P. B. Andrews. Resolution with merging. J. ACM, 15(3):367–381, 1968.
2. F. Bacchus. Enhancing Davis Putnam with extended binary clause reasoning. In

IAAI, pages 613–619. AAAI Press / MIT Press, 2002.
3. M. P. Bonacina and M. Johansson. On interpolation in decision procedures. In

TABLEAUX, volume 6793 of LNCS, pages 1–16. Springer, 2011.
4. A. Cimatti, A. Griggio, and R. Sebastiani. Efficient generation of Craig interpolants

in satisfiability modulo theories. TOCL, 2010.
5. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theorem. J.

Symbolic Logic, 22(3):250–268, 1957.
6. V. D’Silva. Propositional interpolation and abstract interpretation. In European

Symposium on Programming, volume 6012 of LNCS. Springer, 2010.
7. V. D’Silva, D. Kroening, M. Purandare, and G. Weissenbacher. Interpolant

strength. In VMCAI, volume 5944 of LNCS, pages 129–145. Springer, 2010.
8. N. Eén and N. Sörensson. An extensible SAT-solver. In SAT, volume 2919, pages

502–518. Springer, 2004.
9. A. Fuchs, A. Goel, J. Grundy, S. Krstić, and C. Tinelli. Ground interpolation for

the theory of equality. In TACAS, volume 5005 of LNCS, pages 413–427. Springer,
2009.

10. R. Gershman and O. Strichman. Cost-effective hyper-resolution for preprocessing
cnf formulas. In SAT, volume 3569 of LNCS, pages 423–429. Springer, 2005.

11. J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

12. G. Huang. Constructing Craig interpolation formulas. In Computing and Combi-
natorics, volume 959 of LNCS, pages 181–190. Springer, 1995.

13. R. Jhala and K. L. McMillan. A practical and complete approach to predicate
refinement. In TACAS, volume 3920 of LNCS, pages 459–473. Springer, 2006.

14. J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating functions from large
Boolean relations. In ICCAD, pages 779–784. ACM, 2009.

15. L. Kovács and A. Voronkov. Interpolation and symbol elimination. In CADE,
volume 5663 of LNCS, pages 199–213. Springer, 2009.

16. J. Kraj́ıček. Interpolation theorems, lower bounds for proof systems, and indepen-
dence results for bounded arithmetic. J. Symbolic Logic, 62(2):457–486, 1997.

17. S. Maehara. On the interpolation theorem of Craig. Sûgaku, 12:235–237, 1961.
18. K. L. McMillan. Interpolation and SAT-based model checking. In CAV, volume

2725 of LNCS, pages 1–13. Springer, 2003.
19. K. L. McMillan. An interpolating theorem prover. Theoretical Comput. Sci.,

345(1):101–121, 2005.
20. K. L. McMillan. Quantified invariant generation using an interpolating saturation

prover. In TACAS, volume 4963 of LNCS, pages 413–427. Springer, 2008.
21. P. Pudlák. Lower bounds for resolution and cutting plane proofs and monotone

computations. J. Symbolic Logic, 62(3):981–998, 1997.
22. J. Robinson. Automatic deduction with hyper-resolution. J. Comp. Math., 1, 1965.
23. A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation.

In VMCAI, volume 4349 of LNCS, pages 346–362. Springer, 2007.
24. J. Simmonds, J. Davies, A. Gurfinkel, and M. Chechik. Exploiting resolution proofs

to speed up LTL vacuity detection for BMC. STTT, 12(5):319–335, 2010.
25. G. Weissenbacher. Program Analysis with Interpolants. PhD thesis, Oxford, 2010.
26. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.

In CADE, volume 3632 of LNCS, pages 353–368, 2005.

A Proofs

Remark. The downward projection of a clause `(v) = C at vertex v with respect

to c ∈ S is defined as `(v)�c,L
def
= {t ∈ `(v) |L(v, t) v c}, the respective upward

projection is `(v)�c,L
def
= {t ∈ `(v) | c v L(v, t)} (cf. § 2.2). It follows from condi-

tion 1 in Definition 4 that `(v)�⊥,L = ∅ for all vertices v. Therefore, the following
two equalities hold for any clause C = `(v) in a refutation R:

– C�b,L = (C�b,L \ C�a,L)

– C�a,L = (C�a,L \ C�b,L)

We make repeated use of these equalities in this section. Moreover, our proofs
use the following proposition:

Proposition 1. The implication(
n∧
i=1

(xi ∨ Ii) ∧

(
In+1 ∨

n∨
i=1

xi

))
⇒

(
n∨
i=1

(xi ∧ Ii) ∨

(
In+1 ∧

n∧
i=1

xi

))

is a tautology.

Proof: This follows from the fact that the conjunction(
n∧
i=1

(xi ∨ Ii) ∧

(
In+1 ∨

n∨
i=1

xi

))
∧

(
n∧
i=1

(xi ∨ ¬Ii) ∧

(
¬In+1 ∨

n∨
i=1

xi

))

is unsatisfiable (by hyper-resolution). Note that the implication in the other
direction does not hold; a simple counterexample for the case n = 2 is the
assignment x1 = x2 = F, I1 = T, and I2 = I3 = F.

Theorem 1 (Correctness). For any (A,B)-refutation R (where R is a hyper-
resolution proof) and locality preserving labelling function L, Itp(L,R) (if de-
fined) is an interpolant for (A,B).

Proof: By induction over the structure of the (A,B)-refutation R. Let I be
the partial interpolant at a vertex v labelled with a clause C = `(v). We show
that every such I and C satisfy the following conditions:

1. A ∧ ¬(C�a,L)⇒ I,

2. B ∧ ¬(C�b,L)⇒ ¬I, and

3. Var(I) ⊆ Var(A) ∩Var(B).

For the sink v with `(v) = �, this establishes Theorem 1. The labelling
function L, being unique in this proof, is omitted from subscripts.

Base case. Let v be an initial vertex and let C = `R(v).

1. C ∈ A:

(a) A∧¬(C�a)⇒ C�b, is equivalent to A⇒ (C�b \C�aL)∨C�a. This holds
because (C�b \ C�a) ∨ C�a = C, and A⇒ C because C ∈ A.

(b) B ∧ ¬(C�b) ⇒ ¬(C�b) , is equivalent to B ∧ (C�b \ C�a) ⇒ C�b. This
holds because (C�b \ C�a) ⊆ C�b and clauses represent disjunctions.

(c) For all literals t ∈ (C�b \ C�a) the following conditions hold:
– var(t) ∈ Var(A), since C ∈ A.
– L(v, t) = b. Therefore, by Definition 5, Var(t) ∈ Var(B).

This establishes that Var(C�b \ C�a) ⊆ Var(A) ∩Var(B).

2. C ∈ B: Symmetric to C ∈ A.

Induction step. We first prove a useful equality. Let v be an internal vertex of
R with ancestors {v+1 , . . . , v+n , v−}. We claim that

n∨
i=1

(`(v+i) \ {xi})�c ∨ (`(v−) \ {x1, . . . , xn})�c = `(v)�c (3)

holds for a symbol c ∈ {a, b}. This is because for any t ∈ `(v+i) (for 1 ≤ i ≤ n),
if var(t) 6= xi, then L(v+i , t) v L(v, t). The same holds for t ∈ `(v−). Thus, if
var(t) 6= xi and t ∈ `(u)�c for u ∈ {v+1 , . . . , v+n , v−}, then t ∈ `(v)�c. Conversely,
if t ∈ `(v)�c, then c v L(v, t) by the definition of projection. From Definition 5,
L(v, t) = L(v+1 , t) t · · · t L(v+n , t) t L(v−, t), thus, if c v L(v, t) and c 6= ab,
then ∃i . c v L(v+i , t) or c v L(v−, t). It follows that ∃i . t ∈ (`(v+i) \ {xi})�c or
t ∈ (`(v−) \ {x1, . . . , xn})�c.

For the induction step, let `(v+i) = (xi ∨Ci) and `(v−) = (x1 ∨ · · · ∨xn ∨D).
Due to the requirement that Itp(L,R) is defined, we may assume that ∀i ∈
{1..n} . L(v+i , xi) t L(v−, xi) = c (for a fixed c) and perform a case split on c:

1. ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = a:

Induction hypothesis:

satellites (i ∈ {1..n}) nucleus

A ∧ xi ∧ ¬(Ci�a)⇒ Ii A ∧ x1 ∧ . . . ∧ xn ∧ ¬(D�a)⇒ In+1

B ∧ ¬(Ci�b)⇒ ¬Ii B ∧ ¬(D�b)⇒ ¬In+1

It follows that A ∧ ¬(Ci�a) ⇒ (xi ∨ Ii) for i ∈ {1..n} and A ∧ ¬(D�a) ⇒
(In+1 ∨

∨n
i=1 xi), and therefore

A ∧
n∧
i=1

¬(Ci�a) ∧ ¬(D�a)︸ ︷︷ ︸
¬(

∨n
i=1 Ci∨D)�a, by (3)

⇒
n∧
i=1

(x ∨ Ii) ∧ (In+1 ∨
n∨
i=1

xi) .

By applying hyper-resolution on the right-hand side of the implication we
conclude that

A ∧
n∧
i=1

¬(Ci�a) ∧ ¬(D�a)⇒
n+1∨
i=1

Ii .

Similarly, we derive from the induction hypothesis that

B ∧ ¬(

n∨
i=1

Ci ∨D)�a ⇒ ¬In+1 ∧
n∧
i=1

¬Ii ,

and thus

B ∧ ¬(

n∨
i=1

Ci ∨D)�a ⇒ ¬
n+1∨
i=1

Ii .

Var(
∨n+1
i=1 Ii) ⊆ Var(A) ∩ Var(B) holds because Var(Ii) ⊆ Var(A) ∩ Var(B)

for all i ∈ {1..n}.

2. ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = b: The proof is symmetric to the first
case.

3. ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = ab:

Induction hypothesis: Let L(v+i , xi) = a and L(v−, xi) = b, 1 ≤ i ≤ n, for
instance. We obtain the following induction hypothesis:

satellites nucleus

A ∧ xi ∧ ¬(Ci�a)⇒ Ii A ∧ ¬(D�a)⇒ In+1

B ∧ ¬(Ci�b)⇒ ¬Ii B ∧ x1 ∧ . . . ∧ xn ∧ ¬(D�b)⇒ ¬In+1

In general, for an arbitrary labelling function L, this can always be extended
to the induction hypothesis for L(v+i , xi) = L(v−, xi) = ab, 1 ≤ i ≤ n:

satellites nucleus

A ∧ xi ∧ ¬(Ci�a)⇒ Ii A ∧ x1 ∧ . . . ∧ xn ∧ ¬(D�a)⇒ In+1

B ∧ xi ∧ ¬(Ci�b)⇒ ¬Ii B ∧ x1 ∧ . . . ∧ xn ∧ ¬(D�b)⇒ ¬In+1

From this, it follows immediately that

A ∧
n∧
i=1

¬(Ci�a) ∧ ¬(D�a)⇒
n∧
i=1

(xi ∨ Ii) ∧ (x1 ∨ · · · ∨ xn ∨ In+1) ,

and by applying the equality (3) we conclude that

A ∧ ¬(

n∨
i=1

Ci ∨D)�a ⇒
n∧
i=1

(xi ∨ Ii) ∧ (In+1 ∨
n∨
i=1

xi)

holds. This establishes the first condition for case 1 of AB−HyRes; case 2
is covered by applying Proposition 1.

Similarly, we derive

B ∧ ¬(

n∨
i=1

Ci ∨D)�b ⇒
n∧
i=1

(xi ∨ ¬Ii) ∧ (x1 ∨ · · · ∨ xn ∨ ¬In+1) .

Note that this already establishes condition 2 for case 2 of AB−HyRes. By
repeated application of resolution, one can further show that the right-hand
side of this implication is inconsistent with

∧n
i=1(xi∨Ii)∧(x1∨· · ·∨xn∨In+1).

It follows that

B ∧ ¬(

n∨
i=1

Ci ∨D)�b ⇒ ¬

(
n∧
i=1

(xi ∨ Ii) ∧ (In+1 ∨
n∨
i=1

xi)

)
,

which covers case 1 of AB−HyRes.

Note that xi ∈ Var(A) ∩ Var(B) due to L(v+i , xi) t L(v−, xi) = ab (for 1 ≤
i ≤ n) and Definition 5, and therefore Var(

∧n
i=1(xi∨Ii)∧(In+1∨

∨n
i=1 xi)) ⊆

Var(A) ∩Var(B) holds.

Lemma 1. Let L and L′ be labelling functions for an (A,B)-refutation R. If
L(v, t) � L′(v, t) holds for all initial vertices v and literals t ∈ `(v), then L � L′.

Proof: We show that L(v, t) � L′(v, t) for all v in R by structural induction.

Base case. If v in R is an initial vertex, L(v, t) � L′(v, t) holds by assumption.

Induction hypothesis: For an internal vertex v and literal t:

satellites (1 ≤ i ≤ n) nucleus

L(v+i , t) � L′(v+, t) L(v−, t) � L′(v−, t)

Induction step. Let v be an internal vertex in R with ancestors {v+1 , . . . , v+n , v−},
and let `R(v+i) = Ci ∨ xi and `R(v−) = D ∨ x1 ∨ · · · ∨ xn.

We consider two cases:

1. If t /∈ `(v), then L(v, t) = L′(v, t) = ⊥.
2. If t ∈ `(v), there are three cases:

– If L(v, t) = b, then L(v, t) � L′(v, t) because b is the infimum of
(S,�), as indicated in the Hasse diagram to the right.

– If L(v, t) = ab then ab � L′(v, t). If not, L′(v, t) must be b, implying
that L′(v+i , t) with 1 ≤ i ≤ n and L′(v−, t) are all b by the defi-
nition of t. By the induction hypothesis, we further conclude that
for all i ∈ {1..n} it holds that L(v+i , t) = L(v−, t) = b, leading to a
contradiction.

– If L(v, t) = a then, by the induction hypothesis, L′(v+i , t) (where
1 ≤ i ≤ n) and L′(v−, t) are either a or ⊥. In all cases, the lemma
holds.

b

ab

a

⊥

Theorem 3. If L and L′ are labelling functions for an (A,B)-refutation R
(R being a hyper-resolution proof) and L � L′ such that Itpi(L,R) as well as
Itpi(L

′, R) are defined, then Itpi(L,R)⇒ Itpi(L
′, R) (for a fixed i ∈ {1, 2}).

Proof: We prove Theorem 3 by structural induction over R. For any vertex
v in R, let Iv and I ′v be the partial interpolants due to Itp(L,R) and Itp(L′, R),
respectively. We show that Iv ⇒ I ′v ∨ `R(v)|ab,L,L′ for all vertices v, where

`R(v)|ab,L,L′
def
= {t ∈ `R(v) |L(v, t) t L′(v, t) = ab} .

This establishes Iv ⇒ I ′v for the sink to show that Itp(L,R)⇒ Itp(L′, R).

Base case. Let v be an initial vertex and let `R(v) = C.

1. If C ∈ A, then Iv = C�b,L and I ′v = C�b,L′ . We need to show that C�b,L ⊆
C�b,L′ ∨ C|ab,L,L′ . For any t ∈ C�b,L, if L(v, t) 6= L′(v, t) then L(v, t) t
L′(v, t) = ab, and therefore t ∈ C|ab,L,L′ . Otherwise, L(v, t) = L′(v, t) = b,

and therefore t ∈ C�b,L′ .
2. If C ∈ B, then Iv = ¬(C�a,L) and I ′v = ¬(C�a,L′). The proof that C�a,L′ ⊆
C�a,L ∨ C|ab,L,L′ is analogous to the first case.

Induction step. We first prove a useful intermediate result. Let v be an internal
vertex of R with ancestors {v+1 , . . . , v+n , v−}. We claim that(

n∨
i=1

(`(v+i) \ {xi})|ab,L,L′ ∨ (`(v−) \ {x1, . . . , xn})|ab,L,L′

)
⇒ `(v)|ab,L,L′ (4)

for arbitrary locality preserving labelling functions L and L′. We prove (4)
by showing that any t contained in clause of the left-hand side of the im-
plication must also be contained in `(v)|ab,L,L′ . This holds because for any

u ∈ {v+1 , . . . , v+n , v−} and t ∈ `(u) with var(t) 6= xi (for 1 ≤ i ≤ n) if L(u, t) t
L′(u, t) = ab then L(v, t)tL′(v, t) = ab since, according to Definition 1, L(v, t) =
L(v+1 , t)t· · ·tL(v+n , t)tL(v−, t) and L′(v, t) = L′(v+1 , t)t· · ·tL′(v+n , t)tL′(v−, t).

For the induction step, let v be an internal vertex in R and let `R(v+i) =
(xi ∨Ci) and `R(v−) = (x1 ∨ · · · ∨xn ∨D), and let `R(v) =

∨n
i=1 Ci ∨D. Partial

interpolants are indicated as before.

Induction hypothesis:

satellites (1 ≤ i ≤ n) nucleus

Iv+i
⇒ I ′

v+i
∨ (xi ∨ Ci)|ab,L,L′ Iv− ⇒ I ′v− ∨ (x1 ∨ · · · ∨ xn ∨D)|ab,L,L′

Recall from the proof of Lemma 1, that if L(v+i , x) � L′(v+i , x) (for all
i ∈ {1..n}) and L(v−, x) � L′(v−, x), then,

L(v+1 , x) t · · · t L(v+1 , x) t L(v−, x) �
L′(v+1 , x) t · · · t L′(v+1 , x) t L′(v−, x) . (5)

For the induction step, let `(v+i) = (xi ∨Ci) and `(v−) = (x1 ∨ · · · ∨xn ∨D).
We assume that ∀i ∈ {1..n} . L(v+i , xi)tL(v−, xi) = c (for a fixed c) and perform
a case split on c. I and I ′ denote the partial interpolants due to Itp(L,R) and
Itp(L′, R), respectively.

1. ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = a:

Then Iv =
∨n
i=1 Iv+i

∨ Iv− , and from (5) we conclude that for all i ∈ {1..n}
it holds that L′(v+i , xi) t L′(v−, xi) = a, and therefore I ′v =

∨n
i=1 I

′
v+i
∨ I ′v− .

Moreover, L′(v+i , xi) = L′(v−, xi) = a for 1 ≤ i ≤ n, and therefore, the
induction hypothesis can be simplified to

satellites (1 ≤ i ≤ n) nucleus

Iv+i
⇒ I ′

v+i
∨ Ci|ab,L,L′ Iv− ⇒ I ′v− ∨D|ab,L,L′ .

We derive Iv ⇒
(∨n

i=1(I ′
v+i
∨ Ci|ab,L,L′) ∨ (I ′v− ∨D|ab,L,L′)

)
, and by apply-

ing (4), we obtain Iv ⇒
∨n
i=1 I

′
v+i
∨ I ′v− ∨ (

∨n
i=1 Ci ∨D) |ab,L,L′ , which is

equivalent to Iv ⇒ I ′v ∨ `(v)|ab,L,L′ .

2. ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = ab:

We distinguish two cases for AB−HyRes.
In the first case, Iv =

∧n
i=1(xi ∨ Iv+i)∧ (Iv− ∨

∨n
i=1 xi), and by applying the

induction hypothesis we derive

Iv ⇒

(
n∧
i=1

(xi ∨ I ′v+i ∨ (x ∨ Ci)|ab,L,L′)∧

(x1 ∨ · · · ∨ xn ∨ I ′v− ∨ (x1 ∨ · · ·xn ∨D)|ab,L,L′)
)
.

Note that the right-hand side of this implication is equivalent to(
n∧
i=1

(xi ∨ I ′v+i ∨ Ci|ab,L,L′) ∧ (x1 ∨ · · · ∨ xn ∨ I ′v− ∨D|ab,L,L′)

)
,

which in turn implies

n∧
i=1

(xi ∨ I ′v+i ∨ (

n∨
i=1

Ci|ab,L,L′ ∨D|ab,L,L′) ∧

(x1 ∨ · · · ∨ xn ∨ I ′v− ∨ (

n∨
i=1

Ci|ab,L,L′ ∨D|ab,L,L′) .

By applying (4), we obtain

Iv ⇒
n∧
i=1

(xi ∨ I ′v+) ∧ (x1 ∨ · · · ∨ xn ∨ I ′v−) ∨ (

n∨
i=1

Ci ∨D)|ab,L,L′ ,

which establishes Iv ⇒ I ′v ∨ `(v)|ab,L,L′ for the case in which L′(v+i , x) t
L′(v−, xi) = ab for all i ∈ {1..n}. Moreover, since

∧n
i=1(xi∨ I ′v+)∧ (x1∨ · · ·∨

xn ∨ I ′v−) implies (
∨n
i=1 I

′
v+i
∨ I ′v−) (by hyper-resolution), it also holds that

Iv ⇒ I ′v ∨ `(v)|ab,L,L′ if L′(v+i , xi) t L′(v−, xi) = a (for 1 ≤ i ≤ n) and I ′v =

(
∨n
i=1 I

′
v+i
∨ I ′v−). From (5) we conclude that 6 ∃i . L′(v+i , x) t L′(v−, xi) = b.

In the second case, Iv =
∨n
i=1(xi ∧ Iv+i) ∨ (Iv− ∧

∧n
i=1 xi), and by applying

the induction hypothesis we derive

Iv ⇒

(
n∨
i=1

(xi ∧ (I ′
v+i
∨ (x ∨ Ci)|ab,L,L′))∨

(x1 ∧ · · · ∧ xn ∧ (I ′v− ∨ (x1 ∨ · · ·xn ∨D)|ab,L,L′))
)
,

which implies

Iv ⇒

(
n∨
i=1

((xi ∧ I ′v+i) ∨ Ci|ab,L,L′) ∨ ((x1 ∧ · · · ∧ xn ∧ I ′v−) ∨D|ab,L,L′)

)
,

and by (4) we derive Iv ⇒ I ′v ∨ (
∨n
i=1 C ∨ D)|ab,L,L′ , which establishes the

correctness of our claim for the case in which L′(v+i , x) tL′(v−, xi) = ab for
all i ∈ {1..n}. Moreover, since

∨n
i=1(xi ∧ I ′v+) ∨ (x1 ∧ · · · ∧ xn ∧ I ′v−) im-

plies (
∨n
i=1 I

′
v+i
∨ I ′v−), it also holds that Iv ⇒ I ′v ∨ `(v)|ab,L,L′ if L′(v+i , xi)t

L′(v−, xi) = a (for 1 ≤ i ≤ n) and I ′v = (
∨n
i=1 I

′
v+i
∨ I ′v−). As previously,

6 ∃i . L′(v+i , x) t L′(v−, xi) = b holds.

3. ∀i ∈ {1..n} . L(v+i , xi) t L(v−, xi) = b:

Then Iv =
∧n
i=1 Iv+i

∧ Iv− . By (5), we need to distinguish three cases:

(a) ∀i ∈ {1..n} .L′(v+i , x) t L′(v−, xi) = b:

Then, as in case 1, the induction hypothesis can be simplified to Iv+i
⇒

I ′
v+i
∨ Ci|ab,L,L′ (where 1 ≤ i ≤ n) and Iv− ⇒ I ′v− ∨ D|ab,L,L′ , and we

obtain
n∧
i=1

Iv+i
∧ Iv− ⇒

(
n∧
i=1

(I ′
v+i
∨ Ci|ab,L,L′) ∧ (I ′v− ∨D|ab,L,L′)

)
.

By an argument similar to the one made in case 2 we derive Iv ⇒
I ′v ∨ (

∨n
i=1 Ci ∨D)|ab,L,L′ .

(b) ∀i ∈ {1..n} .L′(v+i , x) t L′(v−, xi) = ab:

Then I ′v =
∧n
i=1(xi ∨ I ′v+i) ∧ (x1 ∨ · · · ∨ xn ∨ I ′v−) in the first case of

AB−HyRes, and by applying the induction hypothesis we derive

Iv ⇒
n∧
i=1

(I ′
v+i
∨ (xi ∨ Ci)|ab,L,L′) ∧ (I ′v− ∨ (x1 ∨ · · · ∨ xn ∨D)|ab,L,L′) .

The right-hand side of the implication in turn implies

n∧
i=1

(xi ∨ I ′v+i ∨ Ci|ab,L,L′) ∧ (x1 ∨ · · · ∨ xn ∨ I ′v− ∨D|ab,L,L′) , (6)

and by further weakening (6) and applying (4) we derive

Iv ⇒
n∧
i=1

(xi ∨ I ′v+i) ∧ (x1 ∨ · · · ∨ xn ∨ I ′v−) ∨ (

n∨
i=1

Ci ∨D)|ab,L,L′ . (7)

Finally, (7) also establishes Iv ⇒ I ′v ∨ (
∨n
i=1 C ∨D)|ab,L,L′ for case 2 of

AB−HyRes (by Proposition 1).

(c) ∀i ∈ {1..n} .L′(v+i , x) t L′(v−, xi) = ab:

Then I ′v = (
∨n
i=1 I

′
v+i
∨I ′v−). Since we have previously shown (7) and since

furthermore
∧n
i=1(xi∨I ′v+i

)∧(x1∨· · ·∨xn∨I ′v−) implies (by Proposition 1)∨n
i=1(xi∨I ′v+i)∨(x1∧· · ·∧xn∧I ′v−), which in turn implies

∨n
i=1 I

′
v+i
∨I ′v− ,

we conclude that Iv ⇒ I ′v ∨ `(v)|ab,L,L′ .

Theorem 5. Let R be a local and closed (A,B)-refutation. Then we can con-
struct a hyper-resolution refutation H of (A,B) and a locality preserving labelling
function L such that for each v ∈ VR with `R(v) ∈ L(A) ∩ L(B) there exists a
corresponding vertex u ∈ VH such that ItpKV (R)(v)⇔ Itp1(L,H)(u).

Proof: By induction over the structure of the (A,B)-refutation R. Let Iv
be the partial interpolant at a vertex v.

Base case. For each initial vertex v ∈ VR we construct a vertex u ∈ VH with
`H(u) = `R(v). First, consider the case that `R(v) ∈ L(A)∩L(B). We distinguish
two cases:

1. `R(v) ∈ A: Then Iv = `R(v). Let L(u, `R(v)) = b, and since `H(u) ∈ A we
have Iu = Iv.

2. `R(v) ∈ B: Then Iv = ¬`R(v). Let L(u, `R(v)) = a, and since `H(u) ∈ B we
have Iu = Iv.

Otherwise, `R(v) 6∈ L(A) ∩ L(B). Then L(u, `H(u)) = a if `R(v) ∈ A and
L(u, `H(u)) = b if `R(v) ∈ B, and therefore and Iu = F or Iu = T, respec-
tively.

Induction step. Let v ∈ VR be an internal vertex such that `R(v) ∈ L(A)∩L(B)
and {v1, . . . , vn} = π(v)-premise(v), and `(vi) ∈ L(A)∩L(B) for 1 ≤ i ≤ m ≤ n
and `(vj) 6∈ L(A) ∩ L(B) for m < j ≤ n.

Induction hypothesis. There are {u1, . . . , un} ⊆ VH such that

1. `H(ui) = `R(vi) for 1 ≤ i ≤ n, and
2. Iui

⇔ Ivi for 1 ≤ i ≤ m, and
3. Iuj = F if `(vj) ∈ A (Iuj = T if `(vj) ∈ B, respectively) for m < j ≤ n.

By Corollary 2, the clause C = ¬`H(u1)∨· · ·∨¬`H(un)∨`R(v) is a tautology.
We distinguish two cases:

1. (A-justified) π(v) = A.
Add C to A and add w1 to VH such that `H(w1) = C. Let L(w1,¬`(ui)) = ab
for 1 ≤ i ≤ m, L(w1,¬`(uj)) = a for m < j ≤ n, and L(w1, `(v)) = a. Then,
add w2 to VH and perform the hyper-resolution step

`H(um+1) [F] · · · `H(un) [F] `H(w1) [F]

`H(w2) [F]
,

where `H(w2) = `H(u1) ∨ · · · `H(um) ∨ `R(v) and Iw2
= F. Then, add u to

VH and perform the hyper-resolution step

`H(u1) [Iu1
] · · · `H(um) [Ium

] `H(w2) [F]

`H(u) [Iu]
,

such that `H(u) = `R(v) and Iu =
∧m
i=1(`H(ui) ∨ Iui

) ∧ (F ∨
∨m
i=1 ¬`H(ui)).

2. (B-justified) π(v) = B. Analogous to the first case, but Iw2
= T.

