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Abstract. Post-silicon validation is the time-consuming process of de-
tecting and diagnosing defects in prototype silicon. It targets electrical
and functional defects that escaped detection during pre-silicon verifica-
tion. While the at-speed execution of test scenarios facilitates a higher
test coverage than pre-silicon simulation, this comes at the cost of limited
observability of signals in the integrated circuit. This limitation compli-
cates the localisation of the cause underlying a defect. Trace buffers,
designed to store a limited execution history, partially alleviate but do
not entirely remedy the problem. Since trace buffers typically record only
a small fraction of the system state over at most a few thousand cycles,
their utility is contingent on the cautious selection of traced signals.
This paper presents a technique for the automated selection of trace
signals. While the aim of existing selection strategies is typically to en-
able the (early) detection of defects or to maximise the recoverable state
information, our objective is to facilitate the subsequent automated lo-
calisation of faults using consistency-based diagnosis. To this end, we
use integer linear programming and automated test pattern generation
to identify a subset of state signals through which potential failures are
likely to propagate. We demonstrate that our technique complements our
previous work on SAT-based fault localisation using backbones. In that
context, we evaluate the utility of our results on two OpenCores designs.
We show that for this purpose, our technique generates a better selection
of trace signals than a related approach recently presented by Yang and
Touba.

1 Introduction

Post-Silicon validation deals with debugging early silicon prototypes with the
goal of detecting and diagnosing design faults. These faults may be functional,
i.e. logical bugs, or electrical, i.e. faults in the circuit design. Electrical faults tend
to be trickier to detect since these may be triggered only under very specific con-
ditions and thus this behaviour may not be easily repeatable. In comparison to
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pre-silicon validation using simulation and formal verification, post-silicon vali-
dation is no longer limited by slow software models, but rather can run substan-
tially large traces at speed. However, unlike these software models, there is very
limited signal observability. The observability at the chip outputs is typically
enhanced by adding additional state to the chip, referred to as trace buffers,
which buffer the values of a small set of carefully selected signals, referred to
as trace signals, typically for a few thousand cycles. These buffered values are
then used to both detect and diagnose/localise faults. Since the number of trace
signals needs to be small to keep the trace buffer overhead low, these need to
be carefully selected. This is generally done manually using key designer insight.
While this may be justified for high volume parts such as processors, automation
of this step is highly desirable for application to a broad range of designs. This
paper addresses the problem of automatically selecting the set of trace signals for
their application in aiding fault diagnosis in post-silicon validation. We present
a coverage-based algorithm for this. The algorithm takes as input the design,
the set of possible faults, the set of candidate trace signals and a set of test vec-
tors. In this paper we limit the candidate set of trace signals to be the existing
state bits in the design, though that is not a requirement of our approach. The
algorithm first determines, for each fault and the set of test vectors, the set of
candidate signals that the fault-effect, i.e., error, propagates to. It then selects
a subset of candidates that maximally covers, i.e., detects, the fault set. This
coverage problem is naturally framed as an integer linear programming (ILP)
problem. This formulation is related to recent work done in trace signal selec-
tion by Yang and Touba [19]. However, the formulation in that paper is geared
towards error detection and not fault diagnosis. For a given erroneous trace, the
problem of fault diagnosis or localisation deals with identifying which gate had
the fault and which cycle the fault was activated. In our recent work [21] we
presented an algorithm for fault diagnosis that uses trace buffers. However, the
focus of that paper was not on the trace signals, and thus these were arbitrarily
selected in that work. The work in this paper is complementary in that it pro-
vides a systematic way to select trace signals. In our experimental evaluation in
this paper we show that this coverage based trace selection compares favorably
with the arbitrary selection in fault diagnosis. We also show that it compares
favourably with the error detection based selection [19] by Yang and Touba ap-
plied to fault diagnosis. This evaluation is done using two microcontroller designs
from OpenCores.

This paper is organized as follows. § 2 covers the background and related
work. The technical contributions are presented in § 3 and the experimental
evaluation in § 4. Finally § 5 provides some concluding remarks.

2 Background and Related Work

2.1 Automatic test pattern generation

Automatic test pattern generation (ATPG) is concerned with the construction
of test scenarios that make manufacturing faults surface if present (for a tutorial,
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Fig. 1: Error propagation in a simple sequential circuit

see [5]). The approach is typically based on simple gate-level fault models, the
most popular of which is the single stuck-at fault model, in which the output of
a single gate is permanently stuck at a fixed logic value (0 or 1). For such a fault
to become observable, its effect (i.e., the incorrect output signal of the gate) has
to propagate through the circuit (along a sensitised path) to one of the primary
outputs or to an observable latch. This may not happen with each trace, since
the erroneous signal might be masked by other signals.

Example 1. Consider the propagation of errors in the sequential circuit in Fig-
ure 1a. The simple circuit comprises three latches (labelled A, B, and C) and
a combinational part with two input signals i0 and i1. For the sake of simplic-
ity, we omit the primary output signals and assume that latch C is observable.
Assume that the output of the AND gate in Figure 1a is permanently stuck-at
1, leading to an erroneous result in case the values stored in the latches B and
C are 0 and 1, respectively. For this error to propagate to the latch C in the
current execution cycle, the input signal i1 needs to be 0.

The aim of ATPG is to automatically generate input patterns that result in
the activation and propagation of faults. In order to trigger the stuck-at 1 fault
in Example 1, one of the latches B or C must hold the value 0. For the fault to
propagate to latch C through the subsequent OR gate, it is necessary that i1 is
0. Accordingly, we require input signals that result in different logic values for
at least one of the observable signals of the original and the faulty circuit.

Test pattern generation for digital circuits can be formulated as a Boolean
satisfiability problem (c.f. [5, §22.2.3]), which can be solved using efficient sat-
isfiability checkers (e.g., [14, 9]). For combinational circuits, this approach is
illustrated in Figure 2. By using an XOR gate (or miter) to combine the out-
puts of the original circuit and a duplicate circuit into which a stuck-at fault
has been injected, we obtain a new circuit whose output is one if and only if
the values of the latches and input signals are chosen such that the fault is acti-
vated and propagates to an observable output. Using a satisfiability checker and
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Fig. 3: Execution of two cycles

a propositional encoding of the resulting circuit, we can derive appropriate logic
values.

A similar technique can be applied for sequential circuits. In this setting,
it is sufficient if the error propagates to an observable output or latch after
several execution cycles. While the error in Example 1 may not propagate to
latch C immediately, it does propagate to latch A, from where (in a favourable
test scenario) it may propagate to latch B and eventually latch C in subsequent
execution cycles. In Boolean satisfiability-based ATPG, this is taken into account
by unwinding the circuit into an iterative logic array (ILA) [1], as shown in
Figure 3 for two execution cycles. By encoding a sequence of execution cycles
into a propositional formula, it is possible to obtain a multi-cycle test scenario
in which the fault is activated and propagates. We refer to this approach as
sequential ATPG.

Related Work. Mutation testing is a technique related to ATPG that is applied
in software testing. The test-case generation technique for Simulink programs
presented in [2], for instance, resembles the ATPG approach described above in
that it uses fault models (such as stuck-at faults). The aim of mutation testing,
however, is typically to evaluate or increase the coverage of a test suite. More-
over, unlike ATPG, mutation testing for software programs is typically based on
syntactic modifications (mutations, respectively) of the source code rather than
on fault models.



Fault-free Fault in A Fault in B Fault in C

t t + 1 t t + 1 t t + 1 t t + 1

A 0 0 1 0 0 1 0 0
B 0 0 0 1 1 0 0 0
C 1 0 1 0 1 1 0 0

Functional vector v : i0 7→ 0, i1 7→ 0

Table 1: Fault-free and erroneous executions of the circuit in Figure 1

2.2 Trace Signal Selection Using Integer Linear Programming

In an integrated circuit of realistic dimensions only a fraction the system state
(stored the in latches) can be recorded in a trace buffer. In Example 1, for
instance, we assume that the trace buffer maintains a (limited) history of the
logic values of latch C. The remaining latches are effectively unobservable. Con-
sequently, only errors that eventually propagate to an observable output (or
latch) can be detected. Accordingly, whether (and when) an error is caught is
contingent on the selection of the trace signals (as well as on the test scenario).

Yang and Touba [19] propose a technique to automatically select trace signals
based on the propagation of errors between latches. The approach is based on
the following insight: an error that propagates from the faulty gate to a latch
may keep propagating over multiple cycles (depending on the test pattern that
is applied) until it eventually corrupts an observable signal.

The authors of [19] construct an error transmission matrix which holds, for
a fixed set of single-cycle test patterns, the information between which latches
errors may propagate. The matrix is then transformed into an integer linear
programming (ILP) problem whose optimal solution identifies a set of latches
which capture as many errors propagated from latches in as many test scenarios
as possible.

Example 2. We continue working in the setting of Example 1. Figure 1b illus-
trates one execution cycle in form of an ILA. The latches on the left side rep-
resent the state of the circuit in time-frame t, the latches to the right represent
the subsequent time-frame t + 1.

Table 1 shows four single-cycle executions of the circuit in Figure 1a, starting
from a state in which the latches A and B hold the value 0, and latch C holds the
value 1. The input test vector is the same in all executions (i0 7→ 0, i1 7→ 0). The
first execution is fault-free, whereas we introduced transient errors by flipping
the values of the latches A, B, and C, respectively, in the remaining three
executions. Each of these errors represents a gate-level fault that propagated
to the respective latch, whose bits are highlighted in bold in the table. Table 1
illustrates that in the given scenario, an error in A propagates to B, and an
error in B propagates to A as well as to C. The error introduced in C does not
propagate, since it is masked by the value of B. The error propagation between
the three latches in this situation is indicated in Figure 1c.



Following the methodology presented by Yang and Touba [19], we obtain
the error transmission matrix in Figure 4a. Additional test patterns can be
encoded in the transmission matrix by adding more rows. For clarity, we omit
the optimisation step described in [19] which reduces the size of the matrix by
grouping together independent latches whose information can be compressed.

AB C

(A, v)
(B, v)
(C, v)

 0 1 0
1 0 1
0 0 0



(a) Transmission matrix

max:
∑2

i=0 Ri

SB ≥ R0

SA + SC ≥ R1

0 ≥ R2

R0, R1, R2 ∈ {0, 1}
SA, SB, SC ∈ {0, 1}

SA + SB + SC = 1

(b) ILP problem

Fig. 4: Selecting trace signals using integer linear programming

The ILP problem obtained from the transmission matrix in Figure 4a in order
to select one signal to trace is shown in Figure 4b. Each Ri (i ∈ {0, 1, 2}) repre-
sents a row, and a value of 1 indicates that the corresponding error propagates to
a selected latch in the respective test scenario. Consequently, the objective is to
maximise the sum R0+R1+R2. Whether an error is captured in a latch depends
on the latches that are traced. In our example, we restrict the trace buffer to only
one latch; accordingly, SA +SB +SC = 1. Finally, each row in the transmission
matrix determines which errors can be captured. The line SA + SC ≥ R1, for
instance, encodes that an error in latch B can be captured by either latch A or
latch C in the test scenario v.

Note that this ILP problem does not have a unique optimal solution: assigning
1 to either SA, SB, or SC maximises the objective. A solution SA = 1, SB = 0,
and SC = 0 returned by the ILP solver indicates that we should trace the value
in latch A. No matter which latch we choose, according to Table 1 we will only
be able to track either the error in A, or the error in B (since faults of C do not
propagate in this setting).

Related Work. Hung and Wilton [11] base their signal selection algorithm on
the expected number of reachable system states that can be “ruled out” by
observing these signals. This approach relies on a computationally expensive
approximation of the reachable state space.

Yang et al. [20] propose to use unsatisfiable cores obtained from a test sce-
nario that results in a failure and a propositional encoding of the circuit to
identify signals that are relevant to the analysis of the failure. Moreover, they



propose a SAT-based technique to select trace signals from which relevant signals
that cannot be observed can be reconstructed.

Prabhakar and Hsiao [15] use a multiplexed trace signal scheme which enables
them to effectively double the number of signals that can be traced. Moreover,
the paper proposes a technique to identify signals that can be inferred from
traced signals using logical implication and therefore need not be recorded.

Paula et al. [7] proposes to compute signatures of states to narrow down
the set of predecessor states of the crash state, effectively enabling backwards
state stepping. This allows them to identify the error in an earlier cycle in a
subsequent test run. A follow-up paper [8] describes how repeated test runs
can be used to arbitrarily increase the number of execution cycles which can be
recorded by a trace buffer. Both techniques require that the erroneous behaviour
can be reproduced repeatedly.

A detailed discussion of techniques that use compression techniques to in-
crease observability is provided by [19].

2.3 SAT-based Fault Localisation

The objective of the trace signal selection algorithm in [19] is to detect as many
errors as early as possible. Detecting an error, however, is often the easy part
of the post-silicon validation phase. Due to the observability limitations in inte-
grated circuits, locating the cause of the error can be a formidable challenge.

Consistency-based diagnosis [16] is a technique that aims at locating the
cause of an observed error by identifying fault candidates based on the golden
model of a system and observations of its actual implementation. It relies on au-
tomated reasoning to identify the smallest set of components that explains the
inconsistency between the hardware design and the behaviour of the manufac-
tured prototype. The technique has seen a recent spike in popularity (e.g., [17,
18, 4, 3, 21]) due to the improved scalability of satisfiability solvers. The following
example illustrates the idea underlying consistency-based diagnosis.

Example 3. Recall the setting from Example 1, in which we postulated a stuck-at
1 fault for the AND-gate in the circuit in Figure 1a. The ILA in Figure 1b which
represents one execution cycle of this circuit can be encoded as a propositional
formula in which At, Bt, Ct and At+1, Bt+1, Ct+1 refer to the values held by
the latches in time-frames t and t + 1, respectively:

(At+1 = Bt ·Ct) · (Bt+1 = At + i0) · (Ct+1 = At+1 + i1) (1)

As a result of the faulty AND gate, the logic values in At+1 and Ct+1 are
corrupted during the execution of the manufactured chip. This fact as well as
the initial state and the input values are encoded in the following propositional
formula: (

(At = 0) · (Bt = 0) · (Ct = 1) ·
(At+1 = 1) · (Bt+1 = 0) · (Ct+1 = 1)

)
· (i0 = 0) · (i1 = 0) (2)



Due to the discrepancy between the golden model in Figure 1a and the be-
haviour of the manufactured prototype the conjunction of the formulae 1 and
2 is unsatisfiable. In order to determine the cause of the discrepancy, we can
use a partial maximum-satisfiability (Max-Sat) solver (see [10], for instance)
to identify a minimal set of conjuncts of Formula 1 that are responsible for the
inconsistency of Formula 1 and Formula 2. In our example, dropping the con-
straint (At+1 = Bt · Ct) makes the formula satisfiable, which indicates that a
faulty AND gate in Figure 1b is a possible explanation for the inconsistency.

In Example 3 we assume that all latches are observable. While this is a valid
assumption in the context of pre-silicon debugging, where all signal values can be
determined by means of simulation, this information is typically not available in
the post-silicon setting. In this setting, the approach described in Example 3 may
fail: eliminating the information about Bt, Ct, Bt+1, and Ct+1 from Formula 2
makes the conjunction of the formulae 1 and 2 satisfiable.

This problem can be addressed by means of unwinding the sequential cir-
cuit sufficiently often and constraining the resulting ILA with the information
collected in the trace buffer.

Example 4. The two-cycle ILA in Figure 3 can be translated into the following
propositional formula:

(At+1 = Bt ·Ct) · (Bt+1 = At + it0) · (Ct+1 = At+1 + it1)·
(At+2 = Bt+1 ·Ct+1) · (Bt+2 = At+1 + it+1

0 ) · (Ct+2 = At+2 + it+1
1 )

(3)

Assume that the trace buffer recorded the information (At = 0), (At+1 = 1),
and (At+2 = 1). Constraining Formula 3 with the information obtained from the
trace buffer and the test pattern it0 = 0, it1 = 0, it+1

0 = 0, and it+1
1 = 0 results in

an unsatisfiable SAT instance. A subsequent analysis yields that dropping either
(Bt+1 = At + it0) or (At+2 = Bt+1 · Ct+1) makes the instance satisfiable and
identifies either the OR gate in time-frame t or the AND gate in time-frame t+1
as potential culprits.

Example 4 shows that a consistency-based diagnosis may report more than
one fault candidate. In general, this problem cannot be avoided (even if all latches
are observable), since both gates are valid fault candidates. Note, however, that
the approach identified an exact time-frame in which the respective components
may have failed, making it suitable for the analysis of intermittent or transient
faults.

For large circuits, the number of execution cycles that can be analysed is lim-
ited by the scalability of the underlying logic solver. While in theory it is always
sufficient to analyse the entire execution, in practice the size of the resulting
propositional formula would likely be prohibitive. This problem is addressed
in [12] and [21] by sliding a window of fixed size (backwards) along the exe-
cution trace, thus partitioning the execution trace into ILAs of fixed size. The
technique presented in [12] targets design debugging and requires full observabil-
ity to compute Craig interpolants [6], which are used to propagate information



across windows. Zhu et al. [21] is aimed at post-silicon validation and relies on
backbones (see, e.g., [13]) to propagate state information across windows. The
backbone of a satisfiable propositional formula comprises all literals which take
the same value in all satisfying assignments of the formula.

Example 5. We continue working in the setting of Example 4. Assume that
the scalability of the solver limits the consistency-based analysis technique to
windows of size one. As previously established, the information (At+1 = 1),
(At+2 = 1) and it+1

0 = 0, it+1
1 = 0 is insufficient to yield an inconsistency in

time-frame t+1 of Figure 3. However, from (At+2 = 1) and (At+2 = Bt+1 ·Ct+1)
(c.f. Formula 3) we can derive the backbone Bt+1 = 1 and Ct+1 = 1, which is
inconsistent with (At = 0), it0 = 0, and time-frame t in Figure 3, resulting in
the fault candidate (Bt+1 = At + it0).

Similarly, from (At = 0), it0 = 0, and time-frame t in Figure 3 we can
derive the backbone Bt+1 = 0, which is inconsistent with At+2 = 1 and time-
frame t + 1. Accordingly, the analysis yields the AND gate corresponding to
At+2 = Bt+1 ·Ct+1 as a fault candidate.

Related Work. As previously mentioned, there are a number of papers that
apply consistency-based diagnosis to address pre-silicon debugging (with full
observability) by constraining a faulty RTL model with correct input/output
pairs (given as a specification) [17, 18, 4, 3].

3 Improving Coverage-based Trace Signal Selection

In this section, we propose two improvements over the ILP-based signal selection
approach of Yang and Touba [19]. Our modifications to the algorithm address
the following limitations:

– The approach outlined in §2.2 does not directly take advantage of the tran-
sitivity of error propagation. As pointed out at the end of §2.1, an error may
propagate through non-observable latches for several execution cycles until
it corrupts a latch monitored by the trace buffer.

– The fault model of [19] is applied exclusively to latches. Depending on the
structure of the circuit, however, some latches may have a higher probability
of being corrupted/propagated by gate-level faults than others and thus also
may be more useful for fault localisation.

3.1 Multi-cycle Coverage

The following example illustrates the limitation of a trace signal selection algo-
rithm that is based on a propagation depth of one.

Example 6. Table 2 shows a correct and an erroneous execution of the sequential
circuit in Figure 1a. As in Example 2, we introduce a transient error by flipping



Fault-free Fault in A

t t + 1 t + 2 t t + 1 t + 2

A 0 0 0 1 0 1
B 0 0 0 0 1 0
C 1 1 0 1 1 1

it0 = 0, it1 = 1, it+1
0 = 0, it+1

1 = 0

Table 2: Fault-free and erroneous 2-cycle executions of the circuit in Figure 1

the value of one latch in the execution. Unlike in Example 2, however, the ex-
ecutions in Table 2 have two cycles. As mentioned previously, an error in latch
A propagates to latch B within one cycle. After an additional execution cycle,
however, the error corrupts both latch A and latch C. If we add this information
to the error transmission matrix and the ILP encoding in Figure 4, we are able
to derive that observing latch A or latch C, but not latch B, is the optimal
solution.

3.2 Injecting Faults in Combinational Logic

The starting point of the analysis in [19] is that a gate-level fault has already
propagated to a latch. Depending on the structure of the circuit, however, certain
latches might be more susceptible to capturing an erroneous signal originating
in the combinational logic and thus also have greater value in fault localisation.

Example 7. In the sequential circuit in Figure 1a, a fault in the AND gate may
propagate to latches A and C. A fault in the OR gates may propagate to latch
B and latch C, respectively. Accordingly, if all gates are equally likely to fail,
then latch C has a higher probability of being corrupted.

Motivated by the concerns discussed in § 3.1 and § 3.2, the following section
describes our modifications to the approach of [19].

3.3 Integer Linear Programming Encoding

To take the structure of the circuit into account (see §3.2), we inject faults in the
gates of the combinational part of the circuit as well as in the latches. A set of
fault simulations are applied on each injected fault repeatedly. Unlike the method
proposed in [19], the test patterns used for fault simulation are multi-cycle and
generated by sequential ATPG (as described in §2.1). ATPG helps to provide
tests which result in the activation and the propagation of the fault to a latch
(or primary output). From the fault simulations, we determine the set of latches
to which the fault can propagate and add a row to the error transmission matrix
accordingly. The corresponding ILP problem can then be built as described in
§2.2.



Fault-free Fault in A Fault in B Fault in C

t t + 1 t + 2 t t + 1 t + 2 t t + 1 t + 2 t t + 1 t + 2

A 0 0 0 1 0 1 0 1 0 0 0 0
B 0 0 0 0 1 0 1 0 1 0 0 0
C 1 1 0 1 1 1 1 1 0 0 1 0

it0 = 0, it1 = 1, it+1
0 = 0, it+1

1 = 0

Fault-free Fault in n1 Fault in n2 Fault in n3

t t + 1 t + 2 t t + 1 t + 2 t t + 1 t + 2 t t + 1 t + 2

A 0 0 0 0 0 1 0 1 0 0 0 0
B 0 0 0 0 1 0 0 0 1 0 0 0
C 1 1 0 1 1 1 1 1 0 1 0 0

it0 = 0, it1 = 1, it+1
0 = 0, it+1

1 = 0

Table 3: 2-cycle execution of faults in both latches and internal gates

AB C

(A, v)
(B, v)
(C, v)
(n1, v)
(n2, v)
(n3, v)


1 1 1
1 1 0
0 0 0
1 1 1
1 1 1
0 0 1



(a) Transmission matrix

max:
∑5

i=0 Ri

SA + SB + SC ≥ R0

SA + SB ≥ R1

0 ≥ R2

SA + SB + SC ≥ R3

SA + SB + SC ≥ R4

SC ≥ R5

R0, R1, R2, R3, R4, R5 ∈ {0, 1}
SA, SB, SC ∈ {0, 1}

SA + SB + SC = 1

(b) ILP problem

Fig. 5: ILP problem with coverage on faults of internal gates

Example 8. We continue working on the setting from Example 7. Suppose we
have obtained a 2-cycle test pattern from ATPG. The same test pattern as
in Example 6 are adopted. Transient faults are injected in both latches and
gates. Table 3 shows the correct and erroneous execution of all injected faults.
With the same approach as §2.2, we can obtain the equivalent ILP problem in
Figure 5. For simplicity, we assume that trace signals can be observed with equal
costs on all latches in this paper. In general, the cost for tracing certain signals
depends on the structure of circuit. To favor certain latches, we can intentionally
duplicate their corresponding rows in the transmission matrix. Duplicating rows
in a transmission matrix is acceptable, because the ILP is not the bottleneck of
scalability in our work. Additional details are provided at the end of §4.2.



n1
n2

Fig. 6: Nodes with different fanout degrees

The fact that we use sequential ATPG to determine a set of latches to which
a fault may propagate addresses the concerns described in §3.1. By injecting
faults not only in latches but also in internal gates, we effectively obtain a larger
set of latches that are potentially corrupted, which increases the intersection
of latches that capture several faults. We use a fixed number of cycles for the
generation of the test scenarios; details are provided in § 4.

4 Experimental Evaluation

4.1 Trace Signal Selection

In our experiments, we evaluated our methodology using the single stuck-at-
fault model on two benchmarks from Opencores.org: the 68HC05 (127 latches)
and 8051 (2794 latches) microcontrollers3. This fault model is chosen for its
convenience as it is well understood. This is not a limitation of our approach.
Faults are injected in both latches and internal gates and fault simulation is used
to build an error transmission matrix. Two issues need careful consideration in
constructing the error transmission matrix.

First, each row in the error transmission matrix represents the detection of
a fault in the circuit. Including all possible faults, whose number is proportional
to the size of the circuit, can result in very large matrices. To reduce the number
of faults that need to be considered, we limit the fault sites to the outputs of
fanout-free regions and take advantage of well-known results on fault equivalence.
As shown in Figure 6, node n1 has a fanout-degree of two, while the fanout-
degrees for node n2 is one. A stuck-at-1 fault occurs at node n2. If this fault
is activated by a vector and propagates to node n1, it is equivalent to a stuck-
at-1 fault at n1. If the fault on node n2 is not propagated to node n1 for a
vector, it is masked. Thus, the two rows corresponding to these two stuck-at-1
faults at n1 and n2 in the error transmission matrix are exactly the same. We
refer to those nodes with fanout-degree larger than 1 as fanout-points. As a
result, it is sufficient to consider faults on fanout-points without losing any error
transmission information.

3 OpenCores projects available online at http://opencores.org/project



Second, to build the error transmission matrix, we need to know where each
fault can propagate to. This is achieved by using fault simulation. Unlike the
proposed method from [19], we use multi-cycle test patterns obtained from se-
quential ATPG for fault simulation. The test patterns were limited to 6-cycle
tests to manage test generation time. A test generated for a fault is used in fault
simulation for all the faults.

In our experiments, we limited the number of trace signals to be 5% of the
total number of latches which is the candidate set of trace signals. We used the
CPLEX ILP solver and AMPL modeling language4. For the 68HC05 benchmark,
the ILP solver returns 6 optimized trace signals which can capture 63.75% of
stuck-at faults. For the 8051 benchmark, 140 trace signals are identified that
capture 31.70% of stuck-at faults. This coverage is strongly related to the length
of the test vectors since some of the faults may not be covered at all using the
6-cycle tests.

4.2 Evaluation Method

To evaluate the trace signals selected by our methodology, 30 single stuck-at
faults are injected to both the 68HC05 and 8051 benchmarks to generate 60
faulty circuits. To mimic the post-silicon debug process, instead of running a
real chip prototype, each faulty circuit is simulated by a tailored test vector.
The aim of this tailored test vector is to cause the specific fault to be activated
and observed at some latch or circuit output, just as an erroneous trace would.
The rationale for this is as follows. As our experimentation is based on simulation
rather than at-speed post-silicon validation, it is much slower and thus is limited
to a length of a few thousand cycles. The likelihood of a bug being detected by a
random trace of this length is quite low. As a result, we tailored one test vector
for each faulty circuit. Each of these vectors are 3000 cycles long and the bug
in the circuit is guaranteed to be activated roughly every 100 cycles. However,
there is no guarantee the error will be observed at the outputs or in the trace
buffers, and it is exactly this aspect of the fault propagation that we wish to
observe. For this purpose, during simulation, the execution trace is recorded on
the selected trace buffers and output pins. This is then used as constraints for
the offline SAT-based analysis described in §2.3. By using the sliding window
analysis along this execution trace, we can determine whether the bug can be
localised. Our metric for the quality of the trace signals is the size of the window
required to localise the fault. A smaller window indicates a higher quality of
selection as it results in a more scalable localisation algorithm. This is because
a smaller window means that a smaller number of circuit unfoldings need to be
considered in the analysis. Thus with limited capacity of analysis engines such
as SAT solvers, the size of the circuit that can be accommodated is much larger.

Compared to trace signal selection, the evaluation phase is more time-
consuming. Selecting trace signals only involves one call to the ILP solver, which

4 CPLEX for AMPL available online at http://www.ampl.com/CPLEX
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Fig. 7: Minimum window sizes to detect bugs randomly injected in 68HC05 with
three different sets of selected trace signals
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Fig. 8: Minimum window sizes to detect bugs randomly injected in 8051 with
three different sets of selected trace signals

can easily handle our test cases. However, in the evaluation phase, the SAT solver
is called repeatedly for each window and each call is potentially expensive.

4.3 Experimental Results

Three different sets of trace signals are compared in this evaluation process. The
first set of trace signals are derived using random selection. The second set of
trace signals are selected using the approach of Yang and Touba [19] (latch-fault
propagation), i.e., the error transmission matrix is built based on bugs injected
only on latches and single-cycle fault propagation. The last set of trace signals are
selected based on our approach (all-fault propagation) described above. Further,
as described in § 2.3, each set of trace signals is evaluated by sliding windows
with backbones.



In Figure 7 and Figure 8, each graph represents one of the two sliding win-
dow analyses on different benchmarks. On the x axis, there are 30 randomly
injected single faults for both benchmarks. The y axis represents the minimum
window size required to detect the corresponding fault by the SAT-based fault
localisation approach described in §2.3. We used a limit of 15 time-frames for
the size of the sliding window to manage experimental run times.

The 69hc05 benchmark was the easier case. 28 of the 30 faults could be
localised with either random or latch-fault propagation based selection. Only
the all-fault propagation method could localise all 30 of them. The 8051 bench-
mark was the harder case. Random selection allowed localisation for only 8
faults. Latch-fault propagation performed better, succeeding for 16 faults. All-
fault propagation did much better by succeeding for 23 faults. Further, for most
cases, all-fault propagation was able to localise a fault with a smaller window
size compared to the other methods.

5 Conclusions

This paper considers the problem of selecting trace signals in post-silicon vali-
dation for use in fault-localisation. It uses a coverage based problem formulation
that maximizes the number of faults that can be detected at the trace signals
using a limited number of trace signals. In contrast to a the coverage based for-
mulation of Yang and Touba, our formulation considers faults at all circuit sites,
and not just latches. This increases the likelihood of fault localisation being able
to isolate faults to these sites. Further, in our formulation we consider multi-cycle
fault propagation, which more accurately captures real fault propagation com-
pared to the single cycle propagation of Yang and Touba’s method. The value
of these differences is reflected in the experimental results where we compare
various trace signal selection algorithms in terms of their ability to reduce the
window size needed in sliding window consistency based fault-localisation. This
metric is a proxy for scalability, as a smaller window size indicates that fewer
time frames are needed and thus a larger circuit can be accommodated in each
time frame. Our method performs much better than both random selection, as
well as the Yang and Touba method. Specifically it can detect and localize 14
more faults of a total of 60 faults than the Yang and Touba method.
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