
Advanced SAT Techniques for
Abstract Argumentation

Johannes P. Wallner, Georg Weissenbacher, and Stefan Woltran

Institute of Information Systems, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Vienna, Austria

Abstract. In the area of propositional satisfiability (SAT), tremendous
progress has been made in the last decade. Today’s SAT technology cov-
ers not only the standard SAT problem, but also extensions thereof,
such as computing a backbone (the literals which are true in all satisfy-
ing assignments) or minimal corrections sets (minimal subsets of clauses
which if dropped leave an originally unsatisfiable formula satisfiable). In
this work, we show how these methods can be applied to solve impor-
tant problems from the area of abstract argumentation. In particular,
we present new systems for semi-stable, ideal, and eager semantics. Our
experimental results demonstrate the feasibility of this approach.

Keywords: Abstract Argumentation, Propositional Satisfiability, Ar-
gumentation Systems

1 Introduction

Argumentation is an interdisciplinary subfield of Artificial Intelligence [4] with
links to psychology, linguistics, philosophy and legal theory. Formal methods
of argumentation are nowadays embedded in decision support systems [1], E-
Democracy tools [9], multi-agent systems [34], and many more. Dung’s abstract
model of argumentation [13] (and variants thereof) plays a central role in many of
these applications providing a common core for diverse aspects of argumentation
formalisms. This clearly calls for efficient systems and significant progress and
variety in implementing Dung’s argumentation semantics has been achieved over
the last years (for an overview, see [11]).

One central method is to reduce the argumentation problem at hand to a for-
mula in propositional logic. Reductions of this kind make highly sophisticated
SAT solvers amenable for the field of argumentation. Using classical proposi-
tional logic to evaluate Dung-style argumentation frameworks was first advo-
cated by Besnard and Doutre in [5] and later extended to quantified propositional
logic [22, 2] in order to efficiently reduce abstract argumentation problems with
complexity beyond NP. However, these methods have not been implemented yet.

The goal of this paper is to demonstrate how modern SAT technology can be
used for solving such hard problems in the area of argumentation. In particular,
we consider two extensions of the SAT problem, namely minimal correction sets
(MCSes) [28, 31] and backbones [32]. A minimal correction set is a minimal subset

of the clauses of an unsatisfiable SAT instance which, if dropped, results in a
satisfiable formula. The backbone of a propositional formula φ is the set of all
literals that evaluate to true in all interpretations that satisfy φ.

We demonstrate that these methods suit particular argumentation problems
surprisingly well, simplifying the design of the actual procedures. The work which
is closest to the methods we propose here is the CEGARTIX system [19], which
relies on iterative calls of standard SAT-solvers. Our modular approach results
in reduced engineering effort, allowing for rapid prototyping of abstract argu-
mentation systems that immediately benefit from future improvements of SAT
technology. Moreover, our results indicate that MCSes and backbones can be
more broadly applied to reasoning problems in the AI domain since they directly
treat typical features of such problems making the design of the reductions easier
compared to reductions to standard (quantified) propositional logic.

Moreover, our experimental results are very promising and show that the
proposed methods are competitive to the CEGARTIX system. We recall that
experimental results in [19] show that CEGARTIX outperforms other reduction
approaches like ASPARTIX [21], although the number of calls to the SAT engine
is exponential (with respect to the instance size) in the worst case due to the high
complexity of the problems. One reason for the good performance of CEGARTIX
is that it performs certain semantic-specific optimizations between the SAT-calls
while in monolithic reductions like the ASPARTIX approach, where the entire
problem is reduced at once and given to a “black-box” solver, the domain specific
short-cuts have to be identified by the underlying systems.

The structure of the paper and its main contribution are as follows: After
reviewing abstract argumentation, we present SAT-based techniques to compute
backbones and MCSes (Section 2.2). Section 3 contains our main results: we pro-
vide new proof procedures for semi-stable [8] and eager semantics [7] based on
MCSes and backbones; and show how the ideal semantics [14] can be realized
via a backbone. In Section 4 we present our experimental evaluation showing
that for the ideal semantics we achieve a significant performance gain over exist-
ing systems, and that for semi-stable reasoning we outperform the CEGARTIX
system.

Our new systems and test instances are freely available under the link www.

dbai.tuwien.ac.at/research/project/argumentation/sat-based.

2 Background

2.1 Abstract Argumentation

In this section we introduce (abstract) argumentation frameworks [13] and recall
the semantics we study in this paper.

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where
A is a set of arguments and R ⊆ A×A is the attack relation. The pair (a, b) ∈ R
means that a attacks b.

a

b

c d

e

Fig. 1. Example argumentation framework

An argumentation framework can be represented as a directed graph, as
shown in the following example.

Example 1. Let F = (A,R) be an AF with A = {a, b, c, d, e} and R = {(a, b),
(b, a), (a, c), (b, c), (c, d), (e, e)}. The corresponding graph representation is de-
picted in Fig. 1.

A semantics for argumentation frameworks is given via a function σ which
assigns to each AF F = (A,R) a set σ(F) ⊆ 2A of extensions. In this paper we
focus on the semi-stable [8], eager [7] and ideal [14] semantics. These are based on
the stable and preferred semantics [13] and a fundamental notion underlying all
of these is the concept of an admissible set. Hence we consider for σ the functions
adm, prf , stb, sem, ideal , and eager which stand for admissible, preferred, stable,
semi-stable, ideal, and eager extensions, respectively. We will introduce these
concepts in the following.

The basic concept for all the semantics considered in this paper is the ad-
missible set. Admissibility has two requirements, namely conflict-freeness and
defense of all arguments in the set.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free in F , if
there are no a, b ∈ S, such that (a, b) ∈ R. We say that an argument a ∈ A is
defended by a set S ⊆ A in F if, for each b ∈ A such that (b, a) ∈ R, there exists
a c ∈ S such that (c, b) ∈ R.

Admissible sets are then conflict-free sets of arguments, where each argument
in the set is defended by the set.

Definition 3. Let F = (A,R) be an AF. A set S ⊆ A is admissible in F , if S
is conflict-free in F ; and each a ∈ S is defended by S in F .

Maximal admissible sets, w.r.t. subset-inclusion are called preferred exten-
sions and accept as many arguments as possible, without violating admissibility.

Definition 4. Let F = (A,R) be an AF. An admissible set S ⊆ A is a preferred
extension in F , if there is no admissible set S′ ⊆ A such that S (S′.

A basic property of the preferred semantics is that admissible sets and hence
preferred extensions always exist for any given framework. A popular semantics

for which this is not the case is the stable semantics. For the definition of the
stable semantics and the closely related semi-stable semantics we make use of
the concept of the range of a given set S of arguments, which is simply the set
itself and everything it attacks, i.e. given an AF F = (A,R) and S ⊆ A, then

the range of S, denoted by S+
R is given by S+

R
def
= S ∪ {a | (b, a) ∈ R, b ∈ S}.

Definition 5. Let F = (A,R) be an AF. A conflict-free set S ⊆ A in F is a
stable extension in F , if S+

R = A. An admissible set E in F is a semi-stable
extension in F if there does not exist a set T admissible in F , with E+

R ⊂ T
+
R .

A basic property of these two semantics is that if an AF has stable extensions,
then the semi-stable and stable semantics coincide [8]. The intuition is that
semi-stable extensions should be “close” to stable extensions, in case no stable
extensions exist.

Example 2. Consider the AF from Example 1. Then we have the following ad-
missible sets, respectively extensions: adm(F) = {∅, {a}, {b}, {a, d},{b, d}};
stb(F) = {{a, d}}; prf (F) = {{a, d}, {b, d}}; and sem(F) = {{a, d}}. Note that
if we would add a single isolated self-attacking argument to F , i.e. F ′ = (A′, R′)
with A′ = A ∪ {f} and R′ = R ∪ {(f, f)}, then stb(F ′) = ∅, but the set of
semi-stable extensions would remain the same, i.e. sem(F ′) = sem(F).

Notice that all the semantics introduced until now in this paper may have
multiple extensions. Reasoning tasks on AFs w.r.t. a semantics σ, apart from
simple enumeration of all extensions, include the credulous and skeptical ac-
ceptance of arguments. An argument is credulously (skeptically) accepted for a
semantics and an AF, if it is present in at least one extension (in all extensions)
of the semantics.

Definition 6. Given an AF F = (A,R), a semantics σ and an argument a ∈ A
then we define the following reasoning tasks. The decision problem Credσ(a, F)
answers yes if a ∈

⋃
σ(F) and no otherwise. The decision problem Skeptσ(a, F)

answers yes if a ∈
⋂
σ(F) and no otherwise. Let AllCredσ(F)

def
=
⋃
σ(F) and

AllSkeptσ(F)
def
=
⋂
σ(F).

Example 3. Applying the reasoning tasks to the AF in Example 1, we have
for the preferred semantics the following credulously and skeptically accepted
arguments: AllCredprf (F) = {a, b, d} and AllSkeptprf (F) = {d}.

The remaining two semantics we study in this paper are the ideal and eager
semantics, which take a particular skeptical stance and are among the so-called
unique-status semantics, i.e. always have a unique extension for any AF.

Definition 7. Let F = (A,R) be an AF. For an admissible set S ∈ adm(F), it
holds that

– S ∈ ideal(F), if S ⊆ AllSkeptprf (F) and there is no T ∈ adm(F) with
S ⊂ T ⊆ AllSkeptprf (F);

Table 1. Computational complexity of reasoning in AFs.

σ stb adm prf sem ideal eager

Credσ NP-c NP-c NP-c ΣP2 -c in ΘP
2 ΠP

2 -c

Skeptσ coNP-c trivial ΠP
2 -c ΠP

2 -c in ΘP
2 ΠP

2 -c

– S ∈ eager(F), if S ⊆ AllSkeptsem(F) and there is no T ∈ adm(F) with
S ⊂ T ⊆ AllSkeptsem(F).

That is, the ideal and eager extensions are the maximal-admissible sets w.r.t.
subset-inclusion, composed only of arguments skeptically accepted under pre-
ferred, respectively semi-stable semantics.

Example 4. Continuing the Example 2, based on the AF in Example 1, then
ideal(F) = {∅}; and eager(F) = {{a, d}}. Note that although AllSkeptprf (F) =
{d}, the set {d} is not admissible in F .

Given the set of skeptically accepted arguments w.r.t. preferred or semi-stable
semantics to compute the unique subset-maximal admissible set composed only
of the arguments skeptically accepted, we can make use of the following function,
which we call restricted characteristic function [15].

Definition 8. Let F = (A,R) be an AF. Then F̂F : 2A → 2A is the re-

stricted characteristic function of F and is defined by F̂F (S)
def
= {a ∈ S |

a is defended by S}.
This function iteratively removes arguments from S, which are not defended

by S in F . Applying the function at most |A| times for an AF F = (A,R)
yields the maximal admissible set U ⊆ S, w.r.t. subset-inclusion. Note that this
function is not to be confused with the characteristic function, which one can
use for defining semantics of AFs.

The computational complexity of all the semantics considered in this paper
is high and in many cases “beyond” NP. The complexity of semi-stable has
been investigated in [20], eager in [16] and ideal in [15]. See Table 1 for details.
We briefly recall the complexity classes here. The class ΣP2 contains decision
problems that can be decided in polynomial time using a nondeterministic Turing
machine with access to an NP-oracle, i.e. it can solve a problem in NP in one
step. The class ΠP

2 is defined as the complementary class of ΣP2 . The class ΘP
2

contains decision problems that can be solved by a deterministic polynomial time
algorithm which is allowed to make O(n) non-adaptive calls to the NP-oracle.

2.2 Boolean Satisfiability

This section provides an overview of the propositional SAT problem, satisfiability
solvers, and extensions of the SAT problem – in particular minimal correction
sets [28, 31] and backbones [32] – and iterative SAT-based algorithms for these
problems. For an introduction we refer the reader to the tutorial paper [29].

Algorithm 1 Iterative Probing (computes the backbone of φ)

Require: φ is satisfiable
Ensure: returns {` | ` ∈ {a,¬a | a ∈ A} ∧ ∀I . I |= φ ∧ ` ∨ I |= ¬φ}
1: S = ∅
2: let I : A→ B be such that I |= φ . I may be partial
3: for all ` ∈ {a,¬a | a ∈ A} with I |= ` do
4: if φ ∧ ¬` is unsatisfiable then
5: S = S ∪ {`}; φ = φ ∪ {`}
6: else let J be such that J |= φ ∧ ¬` in
7: I = {a 7→ v | a ∈ A, v ∈ B, I(a) = v ∧ J(a) = v}
8: end if
9: end for

10: return S

Propositional Logic. We work in the standard setting of propositional logic over a

set A
def
= {a, b, c, . . .} of propositional atoms, and the standard logical connectives

∧, ∨, and ¬ (denoting conjunction, disjunction, and negation, respectively). A
literal ` is an atom a ∈ A or its negation ¬a. A clause C is a set of literals repre-
senting the disjunction

∨
`∈C `. A propositional formula in Conjunctive Normal

Form (CNF) is a conjunction of clauses, also represented as a set of clauses. An
interpretation I : A → B maps atoms to boolean values T,F ∈ B. An interpre-
tation I satisfies a formula φ (denoted by I |= φ) if φ evaluates to T under the
(potentially partial) assignment determined by I. A formula φ is satisfiable if
there exists an interpretation I such that I |= φ, and unsatisfiable otherwise.

SAT Solvers. A satisfiability solver is a decision procedure which determines
whether a given formula φ (in CNF) is satisfiable or not. Contemporary SAT
solvers are capable of solving instances with hundreds of thousands of literals
and clauses. SAT solvers largely owe their success to efficient search heuristics
(e.g., [30]) and conflict-driven back-tracking [33]. The latter technique avoids the
repeated exploration of similar portions of the search space by augmenting the
original instance φ with conflict clauses C derived from φ (i.e., |= ¬φ ∨ C).

Modern SAT solvers operate in an iterative manner: conflict clauses derived
from a previous instance φ can be retained in a subsequent run of the solver on
a formula ψ if φ ⊆ ψ. In addition, the back-tracking capabilities of SAT solvers
make it possible to fix a tentative assignment (or assumption, respectively) for
a subset S of A in form of a conjunction of literals over S. Assumptions can be
discarded in subsequent calls. This capability to perform iterative calls is crucial
to the performance of the SAT-based algorithms presented below.

Backbones. The backbone of a satisfiable propositional formula φ comprises the
literals over A that are true in every interpretation I satisfying φ. To com-
pute the backbone of a formula φ (with I |= φ), the currently most efficient
algorithms (according to [37, 32]) iteratively “probe” each atom a ∈ A by sub-

sequently checking the satisfiability of φ ∧ ` (with `
def
= ¬a if I(a) = T, and

Algorithm 2 Minimal Correction Sets

Require: φ
def
=

⋃
i{Ci} is unsatisfiable

Ensure: returns set M of all minimal correction sets for φ

1: ψ =
⋃
i{(ai ∨ Ci)}, with L

def
=

⋃
i{ai} a set of fresh atoms

2: k = 1
3: M = ∅
4: while ψ is satisfiable do
5: ψk = ψ ∧AtMost(k, L)
6: while ψk is satisfiable do
7: let I be such that I |= ψk
8: M =M∪ {{Ci | ai ∈ L ∧ I(ai) = T}}
9: let D be {¬ai | ai ∈ L ∧ I(ai) = T}

10: ψk = ψk ∧D
11: ψ = ψ ∧D
12: end while
13: k = k + 1
14: end while
15: returnM

`
def
= a otherwise). Algorithm 1 illustrates the basic structure of such an imple-

mentation. Practical implementations incorporate techniques such as excluding
variables with opposing values in subsequent satisfying assignments (line 7 of
Algorithm 1), clause reuse, and variable filtering [37, 32].

Minimal Correction Sets. Given an unsatisfiable formula φ, a minimal correction
set is a minimal subset ψ ⊆ φ such that φ\ψ is satisfiable. The constraints χ ⊆ φ
are hard if we require that ψ ∩ χ = ∅ (conversely, the clauses φ \ χ are soft).

Numerous techniques to compute MCSes exist (e.g., [28, 36, 24, 35]), and the
field is still advancing: the algorithm presented in the upcoming publication [31],
for instance, partitions φ into one satisfied and r unsatisfied subsets (S and
U1, . . . ,Ur) and computes MCSes by heuristically moving clauses from Ui to S.

Our implementation for semi-stable and eager semantics (see Sections 3 and
4) does not inherently depend on the implementation details of the MCS al-
gorithm. Algorithm 2 shows a simplified version of the algorithm in [28] that
underlies our implementation. Each (soft) clause C is augmented up front with
relaxation literal a that does not occur anywhere else in φ (line 1). (A common
optimization is to instrument only clauses contained in an unsatisfiable subset
of φ.) The effect of dropping C can now be simulated by choosing an interpre-
tation which maps a to T. Given a set L ⊂ A of relaxation literals, a cardinality

constraint AtMost(k, L)
def
= |{a ∈ L | I(a) = T}| ≤ k (encoded as a propositional

formula [12, 3]) limits the number of clauses that can be dropped. Algorithm 2
derives all MCSes by systematically enumerating assignments of relaxation lit-
erals for increasingly larger values of k (cf. the outer loop starting in line 4).
The inner loop (line 6) enumerates all MCSes of size k by incrementally blocking
MCSes represented by a conjunction of relaxation literals ¬D.

Main
procedure

AF

d e

cb

a

SAT solver

Post-processing

Fig. 2. Basic workflow for the algorithms based on iterative SAT procedures.

3 Algorithms

In this section we will present algorithms to solve reasoning problems associated
with three kinds of complex semantics on AFs, namely the semi-stable, eager
and ideal semantics. The basic idea is to utilize state-of-the-art SAT solvers. Due
to the high complexity it is unlikely that we can in general compactly answer
the reasoning tasks within one propositional encoding and one invocation of a
SAT solver. To tackle this problem we look at multiple calls to the SAT solver,
in particular iterative calls.

The basic workflow of our algorithms is depicted in Fig. 2. We first translate
the given AF to boolean constraints, i.e. into sets of boolean clauses. The main
procedure now formulates queries to the SAT solver and iteratively adapts the
calls depending on already computed calls. After the main procedure is finished
we apply post-processing if needed.

On a more abstract level, we apply the MCS algorithm to solve reasoning
tasks under the semi-stable semantics, in particular AllSkeptsem , and the back-
bone algorithm to solve AllCredadm . Both approaches are based on iterative calls
to a SAT solver.

The eager semantics is based on the semi-stable semantics and, given the
skeptically accepted arguments under the semi-stable semantics from the MCS
algorithm, one can compute the unique eager extension in polynomial time by
means of a post-processing step. The algorithm behind the ideal semantics is
more complicated and is taken from [16]. The difficult part of this algorithm
from a computational point of view is to compute AllCredadm ; the remainder
can be done by a similar post-processing technique as for eager.

In the following we will show how this works in detail. In Section 3.1 we
show how to use MCSes (Algorithm 2) to compute the semi-stable and eager
extensions, and in Section 3.2 we show how to utilize backbones (Algorithm 1)
to compute the ideal extensions of a given framework. In both cases we build on
existing reductions to SAT [5] for the admissible and stable semantics.

We will first recall the propositional formula representing admissible sets of
a given AF from [5], in form of sets of disjunctions of atoms, i.e. in CNF. The
basic idea is that every atom represents an argument. By slightly abusing our
notation we use the set of arguments for a given AF and the set of propositional

atoms of the constructed formula interchangeably.

admA,R
def
=

⋃
(a,b)∈R

{(¬a ∨ ¬b)} ∪
⋃

(b,c)∈R

{(¬c ∨
∨

(a,b)∈R

a)} (1)

The first part of the formula (1) encodes the conflict-free property and the
second part the defense of arguments. Now using the result from [5] we have for
any AF F = (A,R) that adm(F) = {S | I |= admA,R, S = {a | I(a) = T}}, i.e.
the interpretations satisfying admA,R, projected to the atoms mapped to true,
directly correspond to the admissible sets of F .

3.1 MCS Algorithm for Semi-stable and Eager Semantics

Computing semi-stable extensions inherently requires to compute admissible
sets, which are subset-maximal w.r.t. the range. The MCS algorithm computes
subset-minimal sets of clauses of a formula in CNF, which if removed result in
a satisfiable formula. The idea to exploit the MCS algorithm for the semi-stable
semantics is to encode the range as satisfied clauses of a propositional formula
for a given interpretation and additionally requiring that the result is admissible.

For this to work we slightly adapt the formulas from [5] for the stable se-
mantics. Given an AF F = (A,R) we define the following formulas.

in rangea,R
def
= (a ∨

∨
(b,a)∈R

b) (2)

all in rangeA,R
def
=
⋃
a∈A

{
in rangea,R

}
(3)

The formula in rangea,R indicates whether the argument a is in the range
w.r.t. the atoms set to true in an interpretation. In other words, for an AF
F = (A,R) and a ∈ A we have, I |= in rangea,R iff a ∈ S+

R for S = {b |
I(b) = T}. The formula all in rangeA,R is satisfied if all arguments are in the
range. Taking the formulas admA,R and all in rangeA,R together conjunctively,
denoted by stbA,R, results in a formula equivalent to the stable formula in [5].

stbA,R
def
= admA,R ∪ all in rangeA,R (4)

An interpretation I which satisfies admA,R for a given AF F = (A,R) and
a subset-maximal set of clauses of all in rangeA,R corresponds to a semi-stable
extension of F . Consequently, we can derive semi-stable extensions from the
correction sets computed with the MCS algorithm, as long as no clause from
admA,R is dropped. That is, we consider the clauses of the formula admA,R as
hard constraints and the clauses in all in rangeA,R as soft constraints. Note also,
since any AF F = (A,R) has at least one admissible set, we know that admA,R is
always satisfiable. If stbA,R is satisfiable, meaning that F has stable extensions,
then immediately this computation yields the stable extensions, which are equal
to the semi-stable extensions.

The following proposition shows this result more formally. For a given propo-
sitional formula φ in CNF and an interpretation I, we define φI to be the set of

clauses in φ, which are satisfied by I, i.e. φI
def
= {C ∈ φ | I |= C}.

Proposition 1. Let F = (A,R) be an AF and Isem = {S | I |= admA,R, S =

{a | I(a) = T}, @I ′ : I ′ |= admA,R s.t. all in rangeIA,R ⊂ all in rangeI
′

A,R}.
Then sem(F) = Isem .

Proof. Let F = (A,R) be an AF. Assume E ∈ sem(F), then define the following
interpretation I with I(a) = T iff a ∈ E. Then I |= admA,R, since E is admissible
by definition and due to [5] we know that I satisfies admA,R. Suppose now

there exists an interpretation I ′ such that I ′ |= admA,R and all in rangeIA,R ⊂
all in rangeI

′

A,R. But then E would not be maximal w.r.t. the range and hence
no semi-stable extension of F .

Assume E ∈ Isem , which implies E ∈ adm(F) and as above let I be an
interpretation with I(a) = T iff a ∈ E. Suppose there exists a set S ∈ adm(F)

with E+
R ⊂ S

+
R . Then all in rangeIA,R ⊂ all in rangeI

′

A,R for an interpretation I ′

defined as I ′(a) = T iff a ∈ S, which is a contradiction.

The MCS algorithm can now be straightforwardly applied for the reasoning
tasks for the semi-stable semantics we study in this paper, that is the algorithm
can be easily adapted to yield an enumeration of all semi-stable extensions,
answer credulous or skeptical queries or enumerate all arguments skeptically ac-
cepted. Since we need the set of skeptically accepted arguments for computation
of the eager extension, we will present this variant in Algorithm 3.

Algorithm 3 MCS-AllSkeptsem

Require: AF F
def
= (A,R)

Ensure: returns AllSkeptsem(F)

1: φ = {ai ∨ Ci | Ci ∈ all in rangeA,R} with L
def
=

⋃
i{ai} a set of fresh atoms

2: ψ = admA,R ∪ φ
3: k = 0
4: X = A
5: while ψ is satisfiable and k ≤ |A| do
6: ψk = ψ ∪AtMost(k, L)
7: X = X ∩ Probing(ψk)
8: while ψk is satisfiable do
9: let I be such that I |= ψk

10: let D be {¬ai | ai ∈ L ∧ I(ai) = T}
11: ψk = ψk ∧D
12: ψ = ψ ∧D
13: end while
14: k = k + 1
15: end while
16: return X

Algorithm 3 computes the set AllSkeptsem(F) for a given AF F = (A,R).
The formula ψ consists of the clauses for admissibility and the instrumented
clauses of all in rangeA,R, i.e. these clauses may be dropped during the running
time. The idea is that if I |= ψk, then E = {a | I(a) = T} is an admissible set in
F and |E+

R | = |A| − k, since we allow to drop k clauses of all in rangeA,R and
block previously computed MCSes. This means that E is a semi-stable extension
of F , since there is no assignment I ′ which satisfies admA,R and a superset of

all in rangeIA,R. We need to slightly modify Algorithm 2 to incorporate our
reasoning task. We utilize the backbone algorithm in line 7 to compute in X
the set of skeptically accepted arguments. Since all satisfying interpretations
of ψk are semi-stable extensions we compute the set of atoms set to true in
all such interpretations by applying Algorithm 1. There exists alternatives and
optimizations to compute MCSes and Algorithm 3 can be adapted to work with
these as long as all satisfying assignments can be computed w.r.t. the formula
reduced by each of its MCSes separately.

Using the Algorithm 3 for solving the AllSkeptsem problem, we can use its
output to calculate the unique eager extension, since we just have to compute
the subset-maximal admissible set within AllSkeptsem(F) for an AF F . For this
we apply the restricted characteristic function a number of times bounded by

the number of arguments in the framework, i.e. F̂ |A|
F (AllSkeptsem(F)) results in

the eager extension of F .

3.2 Backbone Algorithm for Ideal Semantics

For the ideal semantics we make use of a method proposed in [16], which we recall
in Algorithm 4. The important point for our instantiation of this algorithm is
that we essentially need to compute AllCredadm and afterwards again, as before
for the eager semantics, a post-processing with the function F̂F . We define for
an AF F = (A,R) the auxiliary notion of adjacent arguments of an argument:

adj(a)
def
= {x | (x, a) ∈ R or (a, x) ∈ R}. Additionally we define the restriction of

an attack relation for a set S by R|S
def
= {(a, b) ∈ R | a ∈ S and b ∈ S}.

Briefly put, Algorithm 4 computes first the credulously accepted arguments
w.r.t. admissible sets and then a set X, which consists of all of the credulously
accepted arguments, except those, which have an adjacent argument also cred-
ulously accepted. This set acts as a kind of approximation of the skeptically

Algorithm 4 Ideal-Extension [16]

Require: AF F
def
= (A,R)

Ensure: returns ideal(F)
1: Cred = AllCredadm(F)
2: Out = A \ Cred
3: X = {x ∈ Cred | adj(x) ⊆ Out}
4: F ′ = (X ∪Out,R|(X∪Out))

5: return F̂ |A|
F ′ (X)

accepted arguments w.r.t. the preferred semantics. Constructing then the new
framework F ′ and computing the restricted characteristic function at most |A|
times in this new framework for X, suffices for computing the ideal extension.

Now it is straightforward to instantiate this with the help of a backbone
algorithm. Given an AF F = (A,R), we first simply compute the backbone of
admA,R. Let S be the output of Algorithm 1 on this formula, then O = {a |
¬a ∈ S} be the set of variables set to false in every satisfying interpretation of
admA,R. Since we know that this formula is satisfiable, this means that (A\O) =
AllCredadm(F). The rest of Algorithm 4 can be achieved with post-processing.

4 Experimental Evaluation

In this section we will present our concrete implementation of the presented
algorithms and an experimental evaluation.

In our implementations the overall workflow from Fig. 2 is handled by Unix
shell scripts and for the main procedures we utilize already implemented MCS
and backbone solvers. For all our implementations we adopt the input language
from the ASPARTIX system [21], a system capable of solving many problems on
AFs, based on the answer-set programming (ASP) paradigm. The first step of
the workflow, the translation of this language to a boolean formula, is handled
by a parser implemented in C++.

Our instantiation of the presented algorithm for semi-stable semantics cov-
ers the reasoning tasks of enumerating all extensions, credulous and skeptical
reasoning, as well as computing the set of all skeptically accepted arguments for
a given AF. For the main procedure we utilize the Camus solver [28] in version
1.0.5, which we slightly modified to handle our reasoning tasks. The distinction
between hard and soft constraints is implemented in Camus by the possibility
to supply additional clauses for the relaxation literals. Based on this we imple-
mented the necessary post-processing for computing the eager extension with
an ASP call using the clingo ASP solver [26], version 3.0.4. Note that the post-
processing step is inherently computable in polynomial time, the ASP solver for
this step was used for its declarative and easy-to-use nature. The implemen-
tation for the ideal semantics to compute its unique extensions is based on the
backbone solver JediSAT [37], version 0.2 beta. The post-processing step is again
handled by an ASP call.

To show the feasibility of our approach, we conducted preliminary experi-
ments for checking the performance of the presented algorithms. All tests were
executed under OpenSUSE with Intel Xeon processors (2.33 GHz) and 49 GB
memory. We note that this high amount of memory is not actually used by our
algorithms, we set a hard limit of 4 GB memory usage on all runs, which was
never reached.

Regarding test instances for our experiments, we note that, as identified
in [17], there is still need for benchmark libraries for AFs. Without such stan-
dard libraries artificially generated AFs are the main source of test instances.
Therefore, we follow the line of [19] for benchmarking and used randomly gen-

200 250 300 350

0
20

40
60

80

Number of arguments

m
ea

n
ru

nn
in

g
tim

e
(s

ec
)

●

●

●

●

●

●

●

●

CEGARTIX Skeptsem

CEGARTIX Credsem

MCS Skeptsem

MCS Credsem

Fig. 3. Mean running time for CEGARTIX and the MCS-based algorithm.

erated AFs for testing. For our random creation of AFs we fix a number of
arguments and insert for any pair of arguments (a, b) with a 6= b the attack from
a to b with a given probability p ∈ {0.1, 0.2, 0.3, 0.4}. For each parameter we
created ten random AFs. We considered AFs (A,R) of size |A| ∈ {100, 150, 200,
225, 250, 275, 300, 325, 350}, which totaled in 360 AFs. We have chosen to use
larger random AFs than in [19], since the SAT-based procedures appear to be
able to handle small-sized AFs very well.

For all runs we enforced a timeout of five minutes and measure the whole time
for the workflow from Fig. 2, i.e. combining parsing, solving and post-processing
time. We tested the following reasoning tasks.

– Credulous and skeptical reasoning for semi-stable semantics
– Enumeration of all semi-stable extensions
– Computing the ideal extension
– Computing the eager extension

We compare credulous and skeptical reasoning for semi-stable semantics with
CEGARTIX [19], a SAT-based system for reasoning tasks in abstract argumen-

Table 2. Number of solved instances for CEGARTIX and the MCS-based algorithm.

reasoning task \ |A| 200 225 250 275 300 325 350 % solved overall

CEGARTIX Credsem 120 120 112 91 71 64 50 74.8%
CEGARTIX Skeptsem 120 120 104 84 69 60 48 72%
MCS Credsem 117 120 117 111 85 77 76 83.7%
MCS Skeptsem 117 120 116 102 79 73 73 81%

100 150 200 250

0
20

40
60

80

Number of arguments

m
ea

n
ru

nn
in

g
tim

e
(s

ec
)

● ●

●

●

● Backbone ideal
MCS eager

Fig. 4. Mean running time for computing the ideal respectively eager extension.

tation, which was shown to be a competitive solver. We chose version 0.1a of
CEGARTIX for our tests, since in this version CEGARTIX is able to utilize
incremental SAT-solving techniques and further versions of CEGARTIX mainly
feature capabilities to use different SAT solvers. We let both CEGARTIX and
the MCS-based approach compute the queries for three pre-specified arguments
for AFs with at least 200 arguments, i.e. credulous and skeptical acceptance with
three different arguments. This gives us 120 queries per AF size and in total 840
queries. The results are summarized in Fig. 3, where we show the mean running
time in seconds for both approaches, excluding timed out runs. We grouped to-
gether queries on AFs with the same number of arguments. We see that the
MCS-based approach is competitive and in cases even somewhat outperforming
CEGARTIX. Note that by excluding the timeouts, which are shown in Table 2,
the figures slightly favor CEGARTIX for large AFs.

It is interesting to note that the expected edge density, which we set be-
tween 0.1 and 0.4 appears to play an important role for the performance of the
SAT-based approaches. Out of the total 212 timeouts encountered for credulous
reasoning under semi-stable semantics for the solver CEGARTIX for all consid-
ered queries, 113 were on AFs with 0.1, 75 on AFs with 0.2 and 24 on AFs with
0.3 expected edge density. Showing a similar picture, the MCS-approach had 137
total timeouts and 105 of them with 0.1 and 32 with 0.2 expected edge density.
For skeptical reasoning the results are similar.

For comparing our MCS-approach w.r.t. the enumeration of all semi-stable
extensions we use an ASP approach [18] utilizing metasp for our performance
test. For this ASP approach we used gringo 3.0.5 and claspD 1.1.4 [26]. We
tested both approaches on the same AFs as for the credulous and skeptical

reasoning under semi-stable semantics and out of the 280 AFs we tested, the
MCS-approach solved (i.e. enumerated all semi-stable extensions) 172 instances
while ASP with metasp solved only seven instances within the time limit of five
minutes.

For ideal and eager semantics, we report the mean computation time for AFs
of size |A| ∈ {100, 150, 200, 250} in Fig. 4 to compute the unique extension.
Hence we compute the ideal respectively eager extension for each AF separately,
which gives us 40 computations per number of arguments and 160 such calls in
total per semantics. We encountered one timeout for eager reasoning on AFs
with size 200 and ten with AFs of size 250. For ideal reasoning we encountered
17 timeouts with AFs of size 250. Other systems capable of solving these tasks
are e.g. ASPARTIX, but which could only solve instances with a low number of
arguments, i.e. AFs with less than 30 arguments, which is the reason we excluded
this system in a comparison with our implementations. For ideal reasoning AS-
PARTIX uses a complex ASP encoding technique [23] for the DLV solver [27] (we
used build BEN/Dec 16 2012 of DLV). The system ConArg [6], which is based
on constraint satisfaction solvers, appears to be more competitive. ConArg is
a visual tool, so more detailed performance comparisons are subject of future
work. We tested some randomly generated AFs with 100 and 150 arguments
and let ConArg compute the ideal extension, which it solved within ten seconds
for the AFs with 100 arguments and took more than a minute for AFs with
150 arguments, but one has to factor in that a graphical representation of large
graphs may consume a part of the resources needed for solving the problem.

5 Conclusion

In this paper, we presented new algorithms utilizing extensions of the SAT prob-
lem for hard tasks in abstract argumentation. In particular we showed how to
solve reasoning tasks under the semi-stable and eager semantics using an MCS
solver and based an algorithm for the ideal semantics on the computation of
a backbone of a boolean formula. Reduction-based approaches for semantics
in abstract argumentation include transformations to equational systems [25],
propositional logic [5] and quantified boolean formulas [2, 22]. Our approach dif-
fers from these in that we do not use a single encoding for the whole problem,
but rather solving partial problems iteratively using solvers for extensions to the
SAT problem. Preliminary experiments using our approaches are very promis-
ing, showing a good performance without much engineering effort. The benefit
of applying SAT-solvers for abstract argumentation is also witnessed by a very
recent related approach [10] for enumeration of preferred extensions. Our ap-
proach for semi-stable semantics can be adapted for preferred semantics and a
performance comparison with the systems [10, 19] is an interesting subject for
future work. Further interesting directions are on one side incorporating opti-
mizations developed in the SAT community for our approaches and on the other
side applying the proposed methods to further hard problems in abstract argu-
mentation and extensions thereof. Not in the least, this indicates that modern

SAT technology might be well applicable to other hard problems in the areas of
knowledge representation and AI.

Acknowledgements

This research has been supported by the Austrian Science Fund (FWF) through
projects I1102 and P25518-N23, and the Austrian National Research Network
S11403-N23 (RiSE), as well as the Vienna Science and Technology Fund (WWTF)
through project VRG11-005.

References

1. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions.
Artif. Intell. 173(3-4), 413–436 (2009)

2. Arieli, O., Caminada, M.W.A.: A QBF-based formalization of abstract argumen-
tation semantics. J. Applied Logic 11(2), 229–252 (2013)

3. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

4. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in Artificial Intelligence. Artif.
Intell. 171(10-15), 619–641 (2007)

5. Besnard, P., Doutre, S.: Checking the acceptability of a set of arguments. In:
NMR’04. pp. 59–64 (2004)

6. Bistarelli, S., Santini, F.: Conarg: A constraint-based computational framework for
argumentation systems. In: ICTAI’11. pp. 605–612 (2011)

7. Caminada, M.W.A.: Comparing two unique extension semantics for formal argu-
mentation: Ideal and eager. In: BNAIC’07. pp. 81–87 (2007)

8. Caminada, M.W.A., Carnielli, W.A., Dunne, P.E.: Semi-stable Semantics. J. Log.
Comput. 22(5), 1207–1254 (2012)

9. Cartwright, D., Atkinson, K.: Using computational argumentation to support e-
participation. IEEE Intelligent Systems 24(5), 42–52 (2009)

10. Cerutti, F., Dunne, P.E., Giacomin, M., Vallati, M.: A SAT-based Approach for
Computing Extensions on Abstract Argumentation. In: TAFA’13 (2013)

11. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Implementing
Abstract Argumentation – A Survey. Technical Report DBAI-TR-2013-82, Vienna
University of Technology (2013)

12. Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: LPAR’10. LNCS,
vol. 6355, pp. 154–172. Springer (2010)

13. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

14. Dung, P.M., Mancarella, P., Toni, F.: Computing ideal sceptical argumentation.
Artif. Intell. 171(10-15), 642–674 (2007)

15. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell.
173(18), 1559–1591 (2009)

16. Dvořák, W., Dunne, P.E., Woltran, S.: Parametric properties of ideal semantics.
In: IJCAI’11. pp. 851–856 (2011)

17. Dvořák, W., Gaggl, S.A., Szeider, S., Woltran, S.: Benchmark libraries for argu-
mentation. In: Agreement Technologies, LGTS, vol. 8, chap. The Added Value of
Argumentation, pp. 389–393. Springer (2013)

18. Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Making use of advances in
answer-set programming for abstract argumentation systems. In: INAP’11. pp.
117–130 (2011)

19. Dvořák, W., Järvisalo, M., Wallner, J.P., Woltran, S.: Complexity-sensitive deci-
sion procedures for abstract argumentation. In: KR’12. pp. 54–64 (2012)

20. Dvořák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argu-
mentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)

21. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument and Computation 1(2), 147–177 (2010)

22. Egly, U., Woltran, S.: Reasoning in argumentation frameworks using quantified
boolean formulas. In: COMMA’06. FAIA, vol. 144, pp. 133–144 (2006)

23. Faber, W., Woltran, S.: Manifold answer-set programs and their applications. In:
LPNMR’11, LNCS, vol. 6565, pp. 44–63. Springer (2011)

24. Felfernig, A., Schubert, M., Zehentner, C.: An efficient diagnosis algorithm for
inconsistent constraint sets. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 26(1), 53–62 (2012)

25. Gabbay, D.M.: An equational approach to argumentation networks. Argument &
Computation 3(2-3), 87–142 (2012)

26. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: The Potsdam Answer Set Solving Collection. AI Communications
24(2), 105–124 (2011)

27. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The
DLV system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

28. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

29. Malik, S., Weissenbacher, G.: Boolean satisfiability solvers: techniques and exten-
sions. In: Software Safety and Security - Tools for Analysis and Verification. NATO
Science for Peace and Security Series, IOS Press (2012)

30. Malik, S., Zhao, Y., Madigan, C.F., Zhang, L., Moskewicz, M.W.: Chaff: Engineer-
ing an efficient SAT solver. DAC’01 pp. 530–535 (2001)

31. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI’13 (2013)

32. Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of propositional
theories. In: ECAI’10. FAIA, vol. 215, pp. 15–20. IOS Press (2010)

33. Marques-Silva, J., Sakallah, K.A.: GRASP – a new search algorithm for satisfia-
bility. In: ICCAD’96. pp. 220–227 (1996)

34. McBurney, P., Parsons, S., Rahwan, I. (eds.): Argumentation in Multi-Agent Sys-
tems - 8th International Workshop, ArgMAS 2011, Revised Selected Papers, LNCS,
vol. 7543. Springer (2012)

35. Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS.
In: Workshop on Variability Modelling of Software-Intensive Systems. pp. 83–91.
ACM (2012)

36. Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with pref-
erences. Constraints 15(4), 485–515 (2010)

37. Zhu, C.S., Weissenbacher, G., Sethi, D., Malik, S.: SAT-based techniques for deter-
mining backbones for post-silicon fault localisation. In: HLDVT. pp. 84–91 (2011)

